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1 Overview

Today, we’ll examine a simple application of gradient descent: iterative algorithms for ap-
proximately solving a system of linear equations. Along the way, we’ll get to review some
linear algebra.

2 Systems of Linear Equations
Suppose we have a system of linear equations, like

ZL‘1+172:7,

3$1 - 21‘2 =1.

In general, given an invertible matrix A € R™*" and vector b € R", we want to find z € R"
such that

Az =b.

You might have heard of Gaussian or Gauss-Jordan elimination, which take linear com-
binations of the equations in order to isolate one variable at a time. These are pretty slow:
O(n?).

The upshot is that if we wish to solve such a system up to precision &, under some
conditions, gradient-based methods will take O(log %) gradient computations of a certain
function.

3 Gradient

Gradient of a function f : R" — R at a point * = (z1,...,x,) is defined as Vf =

(g—jl, cee %), where % is the partial derivative of f w.r.t. the variable x;. Another way to



define the gradient is a function from R™ — R™ which satisfies the following

i W@+ h) = f(z) = VfTR]| _

0
h—0 Al

A simple way to find the gradient of a function is to look at f(z + h) and try to express it as

f(x+h)=f(x) + VfTh + second order terms

where second order term is typically O(||h]|?). Let’s look at an example, f(z) = ||z||*> = 2Tz

fx+h)=@+h"(x+h) =2z +2"h+h"z+h"h
= f(z) +2c h+ [l
= f(2)+ VT h+ A
So V f = 2z. For a fixed ||h|| (step size), moving in which direction will lead to the maximum

increase in the function value around z? This is the same as finding ~» which maximizes V f7h
by constraining ||h|| to be a constant. The direction is precisely the same direction as V f.

4 Convex Optimization

Recall the convex optimization framework:

min f(z),

for a convex function f and convex set K.
Let’s define

fz) = || Az —b]?
= (Az — b)T(Az — b)
= ol AT Az — 26T Az + b7b.

We can compute its gradient:
Vf(z)=2AT Az — 2A D

Unsurprisingly, you can verify that this function is convex [sketch a paraboloid]. If we're
at the optimum z = A~'0, the gradient is zero. Otherwise, the gradient points in the
direction of steepest ascent, so we might hope to use it to improve our solution.

Note that if A is a sparse matrix with m nonzero entries, a gradient computation costs
O(m). This is where we typically encounter savings in practice.



5 Gradient Descent

As we learned in class, gradient descent (in the unconstrained case K = R") is the following
recipe for optimization:

e Start with some arbitrary z;.
e At each step, choose i1 < x; — NV f(xy).

How does gradient descent perform on this objective? It depends on the matrix A, which
determines the geometry of the optimization landscape.

6 Eigenvalues and Condition Number

The spectral theorem states that a symmetric matrix M € R™™ (such as M = AT A) can
be written as M = QDQ ™!, with Q orthogonal and D diagonal. In particular, the columns
of @) are the eigenvectors of M, and the entries of D are their corresponding eigenvalues
{0 )

What this means for us is that there is some choice of coordinates for which the graph
of f(z) looks like a standard paraboloid centered around A~'b, stretched by a factor of \; in
direction 1.

We don’t have enough time to do a complete analysis in this precept, but here’s the
intuition:

e When the \; are all close to equal (so the level sets of f look like circles), gradient
descent runs really quickly.

e When this is not the case (so the level sets look like skinny ellipses), gradient descent
is slower.

e When there’s an eigenvalue of 0 (so f(z) looks like a half-pipe), gradient descent might
not converge.

7 Demos
o M =1.
o M = diag(1,9).
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