
COS 324, Precept #4:
Solving Linear Systems via Gradient Descent

October 5, 2017

1 Overview

Today, we’ll examine a simple application of gradient descent: iterative algorithms for ap-
proximately solving a system of linear equations. Along the way, we’ll get to review some
linear algebra.

2 Systems of Linear Equations

Suppose we have a system of linear equations, like

x1 + x2 = 7,

3x1 − 2x2 = 1.

In general, given an invertible matrix A ∈ Rn×n and vector b ∈ Rn, we want to find x ∈ Rn

such that

Ax = b.

You might have heard of Gaussian or Gauss-Jordan elimination, which take linear com-
binations of the equations in order to isolate one variable at a time. These are pretty slow:
O(n3).

The upshot is that if we wish to solve such a system up to precision ε, under some
conditions, gradient-based methods will take O(log 1

ε
) gradient computations of a certain

function.

3 Gradient

Gradient of a function f : Rn → R at a point x = (x1, . . . , xn) is defined as ∇f =
(∂f
∂x1
, . . . , ∂f

∂xn
), where ∂f

∂xi
is the partial derivative of f w.r.t. the variable xi. Another way to

1

define the gradient is a function from Rn → Rn which satisfies the following

lim
h→0

‖f(x+ h)− f(x)−∇fTh‖
‖h‖

= 0

A simple way to find the gradient of a function is to look at f(x+h) and try to express it as

f(x+ h) = f(x) +∇fTh+ second order terms

where second order term is typically O(‖h‖2). Let’s look at an example, f(x) = ‖x‖2 = xTx

f(x+ h) = (x+ h)T (x+ h) = xTx+ xTh+ hTx+ hTh

= f(x) + 2xTh+ ‖h‖2

= f(x) +∇fTh+ ‖h‖2

So ∇f = 2x. For a fixed ‖h‖ (step size), moving in which direction will lead to the maximum
increase in the function value around x? This is the same as finding h which maximizes∇fTh
by constraining ‖h‖ to be a constant. The direction is precisely the same direction as ∇f .

4 Convex Optimization

Recall the convex optimization framework:

min
x∈K

f(x),

for a convex function f and convex set K.
Let’s define

f(x) := ‖Ax− b‖2

= (Ax− b)T (Ax− b)
= xTATAx− 2bTAx+ bT b.

We can compute its gradient:

∇f(x) = 2ATAx− 2AT b.

Unsurprisingly, you can verify that this function is convex [sketch a paraboloid]. If we’re
at the optimum x = A−1b, the gradient is zero. Otherwise, the gradient points in the
direction of steepest ascent, so we might hope to use it to improve our solution.

Note that if A is a sparse matrix with m nonzero entries, a gradient computation costs
O(m). This is where we typically encounter savings in practice.

2

5 Gradient Descent

As we learned in class, gradient descent (in the unconstrained case K = Rn) is the following
recipe for optimization:

• Start with some arbitrary x0.

• At each step, choose xt+1 ← xt − η∇f(xt).

How does gradient descent perform on this objective? It depends on the matrix A, which
determines the geometry of the optimization landscape.

6 Eigenvalues and Condition Number

The spectral theorem states that a symmetric matrix M ∈ Rn×n (such as M = ATA) can
be written as M = QDQ−1, with Q orthogonal and D diagonal. In particular, the columns
of Q are the eigenvectors of M , and the entries of D are their corresponding eigenvalues
{λ1, . . . , λn}.

What this means for us is that there is some choice of coordinates for which the graph
of f(x) looks like a standard paraboloid centered around A−1b, stretched by a factor of λi in
direction i.

We don’t have enough time to do a complete analysis in this precept, but here’s the
intuition:

• When the λi are all close to equal (so the level sets of f look like circles), gradient
descent runs really quickly.

• When this is not the case (so the level sets look like skinny ellipses), gradient descent
is slower.

• When there’s an eigenvalue of 0 (so f(x) looks like a half-pipe), gradient descent might
not converge.

7 Demos

• M = I.

• M = diag(1, 9).

3

	Overview
	Systems of Linear Equations
	Gradient
	Convex Optimization
	Gradient Descent
	Eigenvalues and Condition Number
	Demos

