
COS 324, Precept #2:
A Crash Course on Continuous Probability

October 14, 2017

1 Review (written on side board before class) (5 min)

Recall from discrete probability:

• A probability space (Ω,Pr) is a countable set Ω with a function Pr : Ω→ R+.

• An event is a set of outcomes A ⊆ Ω. It has probability Pr[A] =
∑

ω∈A Pr[ω].

• A (real-valued) random variable X : Ω → R assigns a real number to each outcome.
X = a is an event for each a ∈ R.

• Random variables X and Y are independent if

Pr[X = x ∧ Y = y] = Pr[X = x] · Pr[Y = y].

• The distribution of a random variable X is the function mapping a to Pr[X = a]. Its
nonzero domain is called the support and denoted supp(X).

• The expected value of a r.v. X is E[X] =
∑

x∈supp(X) x · Pr[X = x]. It is a linear

operator: E[aX + bY ] = aE[X] + bE[Y ].

• The variance of a r.v. X is Var[X] = E [(X − E[X])2].

And the Gaussian integral (you’re encouraged to find a proof online):∫ ∞
−∞

e−x
2

dx =
√
π.
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2 Continuous Probability Spaces (10 min)

We understand continuous probability intuitively: e.g. if we throw a dart randomly on
a dartboard, the probability that it lands in the upper right quadrant is 1/4. But the
probability that it lands anywhere in particular (like the exact center), or even a “set of
negligible area” (like the boundary) is zero.

It’s clear that we should reconcile this using a calculus of infinitesimal outcomes and
events. But to pin down a completely rigorous formulation is a subtle matter.1

Throughout this precept, let’s keep in mind as a reference the uniform probability space
on the unit interval: we want to construct a probability space on Ω = [0, 1].

We can’t start by assigning a probability to each outcome. Instead let’s try to build our
probability space from events (subsets of Ω):

1. As before, Pr[Ω] should be 1.

2. If A and B are disjoint intervals, Pr[A ∪B] should be Pr[A] + Pr[B].

3. The probability of an interval [a, b] ⊆ Ω should be b− a.

This is almost the entire story! As long as Pr[·] satisfies (1) and (2), it is a valid probability
function on Ω. In (3) we defined a concrete probability space (Ω,Pr). 2

3 Continuous Random Variables (20 min)

The definition of a random variable carries over straightforwardly: it is a function that
assigns a real number to each outcome.

But in applied settings, the distribution of a random variable is often the primary
workhorse. Most continuous random variables we care about have a probability density
function, which assigns an infinitesimal weight to each outcome. Rather than defining it
immediately, let us first informally state that it is the “histogram” associated with a random
variable and the area under the histogram should be 1.

Some examples:

• The uniform distribution Unif([0, 1]): ρ(x) = 1 if x ∈ [0, 1] and 0 otherwise.

• In general, for Unif([a, b]), we have ρ(x) = 1
b−a on its support.

• The “dartboard distribution” Unif(D2): ρ(x, y) = 1
π

on its support. Notice that we
sneakily introduced a vector-valued random variable.

1In real analysis you can learn in depth about the Lebesgue measure, σ-algebras, and Borel sets.
2The last part is notoriously hard to define in full generality. It’s not quite as easy as assigning a weighted

area to each set. For instance, the Banach-Tarski paradox gives a way to dissect a sphere into two spheres
of the same volume. To avert this, we need to give up trying to assign probabilities to some non-measurable
sets, which (very informally) tend to look like fractals, or countable number of holes. Thankfully, we almost
never run into these in machine learning.
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• The triangle distribution is a non-uniform distribution on [0, 1]: ρ(x) = 2x. It is more
likely to be close to 1 than 0.

This brings us to the definition we need: the pdf ofX is the function ρ so that
∫
x∈A ρ(x)dx =

Pr[X ∈ A]. It’s the continuous analogue of the probability mass function (though it is less
common to call the pdf the distribution). If we have the pdf of a random variable, we can
compute the probability of any event using an integral. In the last example,

Pr[X > 1/2] =

∫ 1

1/2

ρ(x) dx = 3/4.

Or, for the dartboard,

Pr[X > 0, Y > 0] =

∫ 1

0

∫ π/2

0

ρ(x) dr dθ = 1/4.

Let’s add one more example, an important distribution whose support is all of R:

• The normal (or Gaussian) distribution N (µ, σ2): ρ(x) = 1√
2πσ

e−(x−µ)
2/2σ2

. (Sketch

a plot!) For example, N (100, 152) is the pdf of X, where X is a randomly selected
person’s IQ.

If X ∼ N (100, 152), then
Pr[X ≤ 100] = 1/2,

Pr[X ≤ 115] =

∫ 115

−∞
ρ(x) dx ≈ 0.84,

and

Pr[X ≤ 160] =

∫ 160

−∞
ρ(x) dx ≈ 0.99997

Sometimes it is convenient to work with Pr[X ≤ a], which called the cumulative distri-
bution function of X. Notice that it is increasing, and its derivative is the pdf.

4 Expectations and Variance (10 min)

The expectation of a continuous random variable X with pdf ρ is just

E[X] =

∫
supp(X)

x · ρ(x) dx.

For example, if X ∼ N (µ, σ2),
E[X] = µ,

which you can prove by brute force or symmetry.
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Now, let’s compute the variance

Var[X] = E
[
(X − µ)2

]
.

This is ∫
R
(x− µ)2ρ(x) =

∫
R
x2 · 1√

2πσ
e−u

2/2σ2

du = σ2.3

In summary: N (µ, σ2) is the “bell curve-shaped” distribution that has mean µ and variance
σ2. They’re all “equivalent” up to translation and scaling, which is true of many families of
distributions.

Finally, we note the following fundamental property of Gaussians.

Theorem 4.1. Let X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2) be independent. Then,

X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

This is deceptively tricky, and you should try to prove it yourself. Letting Z = X + Y ,
write

E[Z] =

∫
R
z · ρZ(z) dz =

∫∫
R2

(x+ y) · ρX(x)ρY (y) dx dy.

The last inequality uses independence, and it may be helpful to sit down later and convince
yourself that it is true. From there, it is an integration exercise.

A couple of final remarks, as a preview of where we’ll see Gaussians in this course:

• In real life, Gaussians are a good model for many noisy quantities, like “the IQ of a
human is around 100, with variation on the scale of 15”.

• The fact that a sum of Gaussians is a Gaussian is very convenient and fundamental. It
tells us how sources of error accumulate in experiments. It’s also related to the central
limit theorem, which (informally!) says that if you flip 1000 coins, the number of heads
is close to N (500, 250).

• We can choose to view X and Y as a 2-dimensional random vector. Then, we say that
(X, Y ) has the multivariate normal distribution. You’ll become well-acquainted with
multivariate Gaussians in machine learning.

3You can prove this by using Feynman’s favorite technique “differentiating the integral sign.”

4


