
COS 324, Precept #1:
A Crash Course on Discrete Probability

October 14, 2017

In this course, we’ll often be making quantitative statements about situations with ran-
domness. In the first two precepts, we’ll cover the essentials of probability theory, to the
level of rigor and depth required for this course.

This presentation of discrete probability is condensed from http://www.cis.upenn.edu/

~jean/proba.pdf and http://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf.

1 Probability Spaces and Events (15 min)

A probability space is a mathematical object that specifies outcomes and their probabilities.
A discrete probability space (Ω,Pr) is specified by:

• A countable set of outcomes Ω, also known as the sample space.

• A non-negative probability for each outcome in Ω, so that the probabilities of all out-
comes sum to 1.

Some examples of probability spaces:

• Ω = {heads, tails}, Pr[heads] = Pr[tails] = 1
2
. (a fair coin flip)

• Ω = {1, 2, 3, 4, 5, 6}, Pr[roll 1..6] = 1
6
. (a roll of a six-sided die)

• Ω = N, Pr[k] = 1
2k

. (number of coin flips until you see a heads)

• We’ll address the case of uncountable Ω like [0, 1] or R next week.

An event is a subset of Ω. Compute the probability of an event by adding the probabilities
of the outcomes in that event. Examples, respectively:

• Pr[{heads}] = 1
2
.

• Pr[{1, 3, 5}] = 1
2
.
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• Pr[even] = 1
4

+ 1
16

+ 1
64

+ ... = 1
3
.

We’ll address the important case of uncountable Ω (like [0, 1] or R) next week.
Since events are sets of outcomes, they come with Boolean operations:

• ¬A (“not”). Note that Pr[¬A] = 1− Pr[A].

• A ∪B (“or”).

• A ∩B (“and”).

1.1 Independence

Two events A,B are independent if Pr[A ∩ B] = Pr[A] · Pr[B]. For example, consider the
probability space where Ω is the set of sequences of 5 coin flips, and each outcome has
probability 1/32. Then, it can be verified that the event “first coin comes up heads” and
“second coin comes up heads” are independent, but not “first coin comes up heads” and “all
coins come up heads”.

We’ll often specify a probability space by combining smaller probability spaces (forming
a joint probability space), and requiring independence. Above, we have the probability space
of “5 independent fair coin flips”. This uniquely determines the probabilities of all outcomes:
e.g. Pr[HTHHT ] = Pr[H] · Pr[T ] · Pr[H] · Pr[H] · Pr[T ] = 1

32
.

1.2 Conditioning

The final fundamental operation in a probability space is conditioning, which lets us consider
smaller cross-sections of probability spaces. For two events A,B, we define Pr[A|B] (the
conditional probability of A given B) as

Pr[A|B] =
Pr[A ∩B]

Pr[B]
.

As a concrete example, consider a fair die roll. Let A be the event “roll an odd number”.
Let B be the event “roll 3 or less”. Then, Pr[A] = Pr[B] = 1/2, and Pr[A ∩B] = 1/3. So,

Pr[A|B] = 2/3.

That is, given that a fair die roll is a 1, 2, or 3, there’s a 2/3 probability that it’s also
odd. A and B are certainly not independent.

2 Random Variables and their Distributions (15 min)

Even though all objects in probability theory arise from probability spaces, we don’t usually
need to work with them directly. It’s more intuitive to manipulate random variables. An
important definition:
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A (real-valued) random variable on a probability space (Ω,Pr) is a function X : Ω→ R.1

Then, for each a ∈ R (a value that X could take), we have a (possibly empty) subset of
outcomes ω for which X(ω) = a. Think of this as “the event that X = a”, whose probability
we call Pr[X = a], where X depends on some the outcome of (Ω,Pr).

For example, consider the probability space (Ω,Pr) generated by 5 independent fair coin
flips. Then, one example of a random variable on (Ω,Pr) is the function X that maps an
outcome to the number of heads in that outcome. Then, we have

Pr[X = 3] = Pr[ {HHHTT, HHTHT, . . . , TTHHH} ]

= Pr[HHHTT] + Pr[HHTHT] + ...

=

(
5

3

)
· 1

32
=

5

16
.

We often wish to study Pr[X = a] as a function of a, which we call its distribution,
or probability mass function. In the above example, Pr[X = a] = 1

32
, 5
32
, 5
16
, 5
16
, 5
32
, 1
32

for
a = 0, . . . , 5. We call the set of a with Pr[X = a] > 0 the support of X.

Two random variables X and Y are independent if, for any x, y,

Pr[X = x ∧ Y = y] = Pr[X = y] · Pr[Y = y].

We call the LHS the joint distribution of X and Y .

2.1 Examples of Distributions

Some distributions of random variables occur so ubiquitously that they have names.
The simplest is the Bernoulli distribution Bern(p). X is Bernoulli with parameter p if

its support is {0, 1}, and Pr[X = 1] = p. They often arise as indicator variables of events,
like “1 if the first two coins come up heads, 0 otherwise”.

Some others:

• The binomial distribution B(n, p), which has support {0, . . . , n} and Pr[X = k] =(
n
k

)
pk(1−p)n−k. A random variable with such a distribution usually arises by summing

n random variables distributed as Bern(p). Bern(p) is the same as B(1, p).

• The geometric distribution Geom(p), which has (infinite) support N and Pr[X = k] =
(1 − p)k−1p. These arise as waiting times for a repeatedly flipped coin to come up
heads.

We can manipulate random variables algebraically, just as we can manipulate real-valued
functions. For example, if X ∼ B(n, p) and Y ∼ Bern(p) are independent, then X + Y is a
random variable, and its distribution is B(n + 1, p).2

1We’ll see vector-valued random variables in this course, but nothing is too surprising about the way they
work; just replace R with Rn.

2Remember that what we’re doing here is constructing a joint probability space on pairs (X,Y ), on which
we define a new random variable X + Y .
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3 Expectations (15 min)

The expected value (or expectation or mean or first moment) of a random variable is the
probability-weighted average of its possible values.

E[X] =
∑

x∈supp(X)

Pr[X = x] · x.

The law of large numbers states that the average of many independent copies of a random
variable tends towards the expectation. We’ll quantify this later on in the course.

For example, if X is the value of die roll, then

E[X] =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5.

Or, if X ∼ Bern(p), then

E[X] = p · 1 + (1− p) · 0 = p.

Or, if X ∼ Geom(1
2
), then

E[X] =
1

2
· 1 +

1

4
· 2 +

1

8
· 3 + . . . = 2.

3.1 Linearity of Expectation

We will make wide use of the fact is that expectation is linear. That is, the expectation of a
linear cominbation of random variables is the linear combination of their expectations, even
if they are not independent :

E[aX + bY ] = aE[X] + bE[Y ].

Proof:

E[aX + bY ] =
∑
x,y

Pr[X = x, Y = y] · (ax + by)

= a
∑
x,y

Pr[X = x, Y = y] · x + b
∑
x,y

Pr[X = x, Y = y] · y

= a
∑
x,y

Pr[X = x] · x + b
∑
x,y

Pr[Y = y] · y

= aE[X] + bE[Y ].

This immediately implies that the expected value of a random variable distributed as
B(n, p) is np.
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3.2 Variance

We often want to quantify how spread-out a random variable is. For this, it is useful to
reason about its variance:

Var[X] = E
[
(X − E[X])2

]
.

Think about |X−E[X]| as a random variable that measures far X is from its expectation.
The variance measures the average value of the square of this quantity, “penalizing” large
deviations quadratically.3

For example, consider X ∼ B(5, 1
2
), and Y distributed uniformly on the same support

{0, 1, 2, 3, 4, 5}. Then, Var[X] = 1.25, while Var[Y ] ≈ 1.458, which agrees with the intuition
that X is slightly more concentrated around its mean than Y .

Closely related to the variance is the (raw) second moment E[X2]. In general, the k-th
moment is given by E[Xk]. They tell us different things about a distribution– for example,
the third moment measures skewness and the fourth measures kurtosis (pointiness). More
on this later.

3.3 Expected Triangle Count (time permitting)

Here’s a sample problem that brings together some ideas from this precept:
A precept has 25 students. Each pair of students is friends independently with probability

1
10

. What’s the expected number of “triangles” of students who are all mutually friends?
Suppose we try to do this directly. Let Z be the number of such triangles. Then,

E[Z] =
∑
k

Pr[Z = k] · k.

You could do it this way in principle (perhaps by writing a program), but these probabilities
are really hard to compute!

Instead, for each triple {a, b, c}, let Xa,b,c be the indicator variable of the event they are
all friends. Then, Xi is Bernoulli with parameter 1/103. But remember that these indicators
are not independent, since these triples of students might overlap!

Nonetheless, by linearity of expectation, we have

E[Z] =

(
25

3

)
E[Xa,b,c] =

(
25
3

)
103

= 2.3.

Linearity of expectation alone is enough to solve an impressive array of problems.
(Food for thought: how might you compute the variance?)

3In some cases, one uses E [|X − E[X]|] (“mean absolute deviation”) to measure spread, but as it turns
out, variance is often easier to compute and manipulate.
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