COS 324: Lecture 8

Gradient Descent

Elad Hazan Yoram Singer

Admin

• HW4

Recap

- Online learning, RWM
- statistical learning, motivated efficient algorithms/optimization
- Perceptron
- Started convex analysis
- Today: convex optimization and gradient descent

Mathematical optimization

Input: function $f: K \mapsto R$, for $K \subseteq R^d$

Output: point $x \in K$, such that $f(x) \le f(y) \ \forall \ y \in K$

Convex Functions and Sets

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \text{dom} f$ and any $a \in [0, 1]$,

$$f(ax + (1-a)y) \le af(x) + (1-a)f(y)$$

A set $C \subseteq \mathbb{R}^n$ is convex if for $x, y \in C$ and any $a \in [0, 1]$,

$$ax + (1 - a)y \in C$$

Convexity: local → global

- Theorem: for f convex, every local minimum is a global minimum
- Global minimum = smallest point according to f
- Local minimum: everyone around the point is larger.
- Formally:

$$B_r(x) = \{y: |x - y| \le r \}$$

X is local min if exists r>0 such that

$$\forall y \in B_r(x). f(y) \ge f(x)$$

Calculus reminder: gradient

• Gradient = the direction of steepest descent, which is the derivative in each coordinate:

$$-[\nabla f(x)]_i = -\frac{\partial}{\partial x_i} f(x)$$

• Example: $f(x) = \log(w^{T}x)$, $f(x) = \max\{0, 1 - w^{T}x\}$

Convexity

• Alternative definition:

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y - x)$$

(assumes differentiability, o/w subgradient) (another alternative: second derivative is non-negative in 1D)

Lipschitzness

f is G-Lipschitz if for every $x, y \in K$, we have

$$|f(x) - f(y)| \le G|x - y|$$

Note: for convex functions, suffices that the gradient is bounded (why?)

$$\forall x \in K \quad |\nabla f(x)| \le G$$

Recall for convex functions:

$$f(x) - f(y) \le \nabla f(x)^{\mathsf{T}} (x - y) \le |\nabla f(x)| |x - y| \le G|x - y|$$

Is sign Lipschitz? Hinge-loss?

Optimality conditions

 x^* is the minimum of convex function f iff $|\nabla f(x^*)| = 0$

If we have a constrained set K, then it is optimum iff

$$\prod_{K} [x^* - \nabla f(x^*)] = x^*$$

Here \prod_K denotes the projection operation, defined as:

$$\prod_{K} [y] = \arg\min_{x \in K} |x - y|$$

Projections

For projections over convex sets, defined as

$$\prod_{K} [y] = \arg\min_{x \in K} |x - y|$$

We have the Pythagorean theorem:

$$|y - x|^2 \le |y - z|^2$$

Greedy optimization: gradient descent

 Move in the direction of steepest descent, which is:

$$-[\nabla f(x)]_i = -\frac{\partial}{\partial x_i} f(x)$$

$$x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$$
"step size" or "Learning rate"

gradient descent – unconstrained

Let:

• G = upper bound on norm of gradients

$$|\nabla f(x_t)| \le G$$

 $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

• D = distance from initial point to optimum $|x_1 - x^*| \le D$

Theorem: for step size $\eta = \frac{D}{G\sqrt{T}}$

$$f\left(\frac{1}{T}\sum_{t}x_{t}\right) \leq \min_{x^{*} \in K}f(x^{*}) + \frac{DG}{\sqrt{T}}$$

Proof:

 $y_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$ $x_{t+1} = \arg\min_{\mathbf{x} \in K} |y_{t+1} - \mathbf{x}|$

Observation:

$$|\mathbf{x}^* - \mathbf{x}_{t+1}|^2 = |\mathbf{x}^* - \mathbf{x}_t|^2 - 2\eta \nabla f(x_t)(x_t - x^*) + |\nabla f(x_t)|^2$$

Proof:

Observation:

$$|\mathbf{x}^* - x_{t+1}|^2 = |\mathbf{x}^* - \mathbf{x}_t|^2 - 2\eta \nabla f(x_t)(x_t - x^*) + |\nabla f(x_t)|^2$$

$$y_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$$
$$x_{t+1} = \arg\min_{\mathbf{x} \in K} |y_{t+1} - \mathbf{x}|$$

Thus:

$$|\mathbf{x}^* - \mathbf{x}_{t+1}|^2 \le |\mathbf{x}^* - \mathbf{x}_t|^2 - 2\eta \nabla f(\mathbf{x}_t)(\mathbf{x}_t - \mathbf{x}^*) + G^2$$

And hence:

$$\begin{split} f(\frac{1}{T}\sum_{t}x_{t}) &- f(x^{*}) \leq \frac{1}{T}\sum_{t}[f(x_{t}) - f(x^{*})] \leq \frac{1}{T}\sum_{t}\nabla f(x_{t})(x_{t} - x^{*}) \\ &\leq \frac{1}{T}\sum_{t}\frac{1}{2\eta}(|\mathbf{x}^{*} - \mathbf{x}_{t}|^{2} - |\mathbf{x}^{*} - \mathbf{x}_{t+1}|^{2}) + \frac{\eta}{2}G^{2} \\ &\leq \frac{1}{T \cdot 2\eta}D^{2} + \frac{\eta}{2}G^{2} \leq \frac{DG}{\sqrt{T}} \end{split}$$

gradient descent

Theorem: for step size $\eta = \frac{D}{G\sqrt{T}}$

$$f\left(\frac{1}{T}\sum_{t} x_{t}\right) \leq \min_{x^{*} \in K} f(x^{*}) + \frac{DG}{\sqrt{T}}$$

Thus, to get ϵ -approximate solution, apply $\frac{D^2G^2}{\epsilon^2}$ gradient iterations.

GD for linear classification

$$w = \arg\min_{|w| \le 1} \frac{1}{m} \sum_{i} \ell(w^{\top} x_i, y_i)$$

$$\ell(w^{\mathsf{T}}x_i, y_i) = \max\{0, 1 - y_i \ w^{\mathsf{T}}x_i\}$$

$$\ell(w^{\mathsf{T}}x_i, y_i) = \log(1 + e^{y_i w^{\mathsf{T}}x_i})$$

GD for linear classification

$$w = \arg\min_{|w| \le 1} \frac{1}{m} \sum_{i} \ell(w^{\mathsf{T}} x_i, y_i)$$

$$w_{t+1} = w_t - \eta \frac{1}{m} \sum_{i} \ell'(w_t^{\mathsf{T}} x_i, y_i) x_i$$

- Complexity? $\frac{1}{\epsilon^2}$ iterations, each taking ~ linear time in data set
- Overall $O\left(\frac{md}{\epsilon^2}\right)$ running time, m=# of examples in R^d
- Can we speed it up??

Summary

- Mathematical optimization for linear classification
- Convex relaxations
- Gradient descent algorithm
- GD applied to linear classification