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Recap

* Online learning, RWM

e statistical learning, motivated efficient algorithms/optimization
* Perceptron

 Started convexanalysis

* Today: convex optimization and gradient descent



Mathematical optimization

Input: function f: K —» R, forK € R?
Output: pointx € K, suchthat f(x) < f(y)Vy€eK




Convex Functions and Sets

A function f: R" — R is convex if for z,y € dom fand any a € |0, 1],

flaz + (1 —a)y) <af(z)+(1—a)f(y)

A set C C R" is convex if for 2,y € C' and any a € [0, 1],

ar+ (1 —a)y € C :




Convexity: local = global

* Theorem: for f convex, every local minimum is a global minimum

* Global minimum = smallest point accordingto f
* Local minimum: everyone around the point s larger.

* Formally:
B,x)={y: |x—y| <71}
e Xis local min if exists r>0 such that

vy € Bi(x).f(y) = f(x)



Calculus reminder: gradient

* Gradient=the direction of steepest descent, which is the
derivative in each coordinate: \

9,

—|Vf(z)]; = _ﬁ—atif(x)

e Example: f(x) =log(w "x), f(x) = max{0,1 — w "x}




Convexity

e Alternative definition:

f(y) = f(x) + Vf () ' (y — x)

(assumes differentiability, o/w subgradient)
(another alternative: second derivative is
non-negative in 1D)



Lipschitzness

fis G-Lipschitzif forevery x,y € K, we have

fG) = fWI<Gx—yl

Note: for convexfunctions, suffices that the gradientisbounded (why?) LER

VxeK |Vf(x)| <G

Recall for convex functions:

fO)=fO V) (x—y) < IVfllx —yl <Glx —y| Yo————

Is sign Lipschitz? Hinge-loss?




Optimality conditions

x* is the minimum of convex function f iff

Vf (x| =0

If we have a constrained setK, thenitis
optimum iff

[ [ v =

K

Here [[,  denotesthe projection operation,
defined as:

l:l[y] = arg glellglx -yl




Projections

For projections over convexsets, defined as
= argmin|x —
I_I[V] gmin|x —y|
K
We have the Pythagorean theorem:

ly —x|? < |y —z|*




Greedy optimization: gradient descent

* Move inthe direction of steepest
descent, which is:

VI @) = 5 (@)

Xep1 < X — NV (xt) /’
.y

“step size” or “Learning rate”



gradient descent — unconstrained

Let:
e G =upperboundon norm of gradients

VFGe)| < 6 Xerr < X —nVf(xe)

D =distance from initial point to optimum
|X1 — x*l <D

Theorem:for step size n = GL\/T

((F2m ) = map e+

t



Proof: Ver1 < X =NV (xe)
Observation: Xt+1 — aI'g rglellr(l |Ver1 — x|

X" = Xepq|? = X7 = %2 = 20V () (e — x™) + |VF () |2



Proof:

Observation:

X" = xeyq[* =

Thus:

And hence:

x* = x¢|% = 20V f () (e — x*) + [V (x0) |2

Ver1 < X =NV (xe)
Xep1 = argmin|yg,

X" = Xeg1 12 S X = x| = 20V f () (xp — x™) + G°

FG Y ) ~ ) S ;Z[ﬂxt) FO] <
t
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gradient descent

Theorem: for step size 11 = GL\/T

/ (%Z’%) < mip /G + 7

t

ZGZ

Thus, to get e-approximate solution, apply gradient

iterations.

€2



GD for linear classification A _@

: - o
= arg min ;Z wTxy) 0 S

1. Ridge / linear regression (w'x;,vy;) = (WwTx; — y;)?
2. SVM f(w'x;,y;) = max{0,1 —y; w'x;}
3. Logistic regression f(w'x;,y;) =log(1+ e”i WTxi)



GD for linear classification A _@

= arg min gz twiay) ° A °

@
1 , °
Wtr1 = We — Uazf (W' X, ¥:)x; @
i

* Complexity? iterations, each taking ~ linear time in data set

62

* Overall 0 ( ) running time, m=# of examples in Rd

* Can we speed it up??



Summary

* Mathematical optimization for linear classification
* Convexrelaxations
* Gradient descent algorithm

* GD applied to linear classification



