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Admin

* Survey:
* Mic
* Examples
* Theory vs. implementation standoff
* Too slow/fast/just-right standoff (and also easy/hard)
* Ex1 Q2 typo

* HW3



Recap

* Online learning, RWM

e Definition + fundamental theorem of statistical learning, motivated
efficient algorithms/optimization

* Perceptron



Agenda

e convexrelaxations
* convex optimization
 (perhaps) Gradient descent

* But first — some examples of learning problems that fit our model!



Definition: learning from examples w.r.t.
nypothesis class

A learningproblem: L = (X,Y,H)

X =Domain of examples (emails, pictures, documents, ...)

Y = label space (usually, binary Y={-1,1} or {0,1})
D =distribution over (X,Y) (the world)

Data access model: learner can obtaini.i.d samplesfrom D
H = class of hypothesis:H € {X » Y}

Goal: produce hypothesishe H with low generalization error

err(h) = E(yy)~p [A(x) # y]



(agnostic) PAC learnability

Learning problem L = (X,Y, H) is (agnostically) PAC-learnable if there exists a learningalgorithm
(i.e.ERM) s.t. for every §, € > 0, there exists m = f(€,6,H) < oo, s.t. after observing S examples, for
|S| = m, returnsahypothesish € H , such that with probability at least

1-6
it holds that

< mi *
err(h) < min err(h*) + €

Equals zero

for realizable
concepts




Examples

* Apple factory:
* Applesare sweet (box) or sour (for export)
Features of apples: weight and diameter

Weight, diameter are distributed uniformly at random in
a certain range

A

XyYy="7 +
Reasonable hypothesisclass?
Realizable? N +

[ J
Weight

Diameter



Examples: MPG prediction

* XYH="
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Examples

e Character recognition
e XY="7
* Reasonable hypothesisclass?
* Realizable?




Examples

* Spam detection:
e XY="7
* Reasonable hypothesisclass?
* Realizable?

e Chair classification
e Gene association w. diseases
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Linear classifiers o 07 %,

Domain = vectors over Euclidean space R4 o)

Hypothesis class: all hyperplanesthat classify accordingto: % o

h(x) = sign(w'x — b)

(we usuallyignore b —thebias, itis 0 almost w.l.0.g.)



The Perceptron Algorithm

[Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969]
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The Perceptron Algorithm

lteratively:
1. Find vector x; for which sign (W'x;) # y;

2. Add x; to w:

Wip1 < We T VX



The Perceptron Algorithm

Reminder: Thm [Novikoff 1962]: for data with margin €, perceptron returns

. .1, .
separating hyperplanein o iterations



Noise?



ERM for noisy linear separators?

GivenasampleS = {(x1,v1), ..., ¢, V) } , find hyperplane (through the origin w.l.0.g) such that:

w = arg m]in|{i s.t. sign (WTxi) # Vi }|
lwl<1
e NP-hard!

* - convexrelaxation + optimization!



Noise — minimize sum of weighted violations



Soft-margin SVM (support vector machines)

GivenasampleS = {(x1,v1), ..., ¢, V) } , find hyperplane (through the origin w.l.0.g) such that:

1
w = argmin zaz max{0,1 —inTxi}}
i

lwl<1

» Efficiently solvable by greedy algorithm —gradient descent

* More general methodology: convex optimization

* Nextfew lectures: optimization theory & algorithms!



Mathematical optimization

Input: function f: K —» R, forK € R?
Output: pointx € K, suchthat f(x) < f(y)Vy€eK




Mathematical optimization

e Continuous functions (back to calculus,
derivatives, differentiability, ...)

* \/s. combinatorial optimization as in graph algorithms (strong
connection)

* Studied since early 1900’s , lots of work in soviet union
(central optimization, resource allocation, military applications, etc.)

 Special cases: linear programming, convex optimization, max flow in
graphs

Efficient (poly-time)
algorithms




Optimization for linear classification _@

Givena sample S = {(x{, V1), .., (X;, Vi) }, find " e %, "o
hyperplane (through the origin w.l.0.g) such that: @

W = arg min # of mistakes
lw|<1



Optimization for linear classification _@




Optimization for linear classification _@

Loss function:
o(w, (x;, ;) = sign(y;w " x;)

Mathematical optimization:

min f(w)
For f(w) = E [£(w, (x;,¥;))]




Minimization can be hard




Sum of signs = hard




Convex functions: local = global

Sum of convex functions = also convex



Convex relaxation for 0-1 loss

g. - —— Misclassification
—— Exponential
o - Binomial Deviance
a7 —— Squared Error
——  Support Vector
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Convex relaxation for linear classification _@

w=argmin|{i s.t.sign (w'x;) # y}| o :
Wil

W = arg |mlin1 £(wx;,y;) such as:
W=

1. Ridge / linear regression?(w'x;,v;) = (WwTx; — y;)*
2. SVM L(w'x;,y;) = max{0,1 —y; w'x;}

3. Logistic regression £(w'x;,y;) =log(1+ einTxi)




Small recap

* Finding linear classifiers: formulated as mathematical optimization
e Convexity: property that allows local greedy algorithms
* Formulate convex relaxations to linear classification

Next:
* Convexanalysis
* Algorithms for convex optimization



Convexity

Aset f: K € R% is convexif and only if for everyx,y €
K, the segment |x,y] € K is also in K. That s, for every
a € [0,1], the convex combinationax + (1 —a) y

is in K.




Convexity

A function f: R% — R is convexif and only if for every
a € [0,1]:

flax+(A-a)y)saf(x)+A-a)f(y)

af(x)+ (1 —-a) f(y)

* Informally: smiley ©

flex+(1-a)y)



Epigraph

A function f: R » R is convexif and only if its
epigraph is a convexset:

Epigraph(f) = {(x,y)|f (x) < y}




Convex and general functions
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Convex and general functions




Convex and general functions




Convexity: local = global

* Theorem: for f convex, every local minimum is a global minimum

* Global minimum = smallest point accordingto f
* Local minimum: everyone around the point s larger.

* Formally:
B,x)={y: |x—y| <71}
e X is local min if exists r>0 such that

vy € Bi(x).f(y) = f(x)



Theorem: f convex, every local minimum is a
global minimum

* |local min: x, exists r>0 such that
Vy € B(x).f(¥) = f(x)
* Thus for every v, there exists some very very small & > 0, such that
X+ a(v —x) € B.(x), and thus

flx) < f(x+ a(v —x))

= f((l —a)x + cw)

<(A-a)fx)+af (v)
af (x) < af (v)

This holds for every v, and thus x is a global minimum.

* Thus,



Summary

 Motivation: linear classification with noise is NP-hard

* Thus we have convexrelaxation (i.e. SVM), for which we have efficient
algorithms

 Started the theory of mathematical & convex optimization



