COS 324: Lecture 7

Introduction to convex optimization

Elad Hazan Yoram Singer

Admin

- Survey:
 - Mic
 - Examples
 - Theory vs. implementation standoff
 - Too slow/fast/just-right standoff (and also easy/hard)
 - Ex1 Q2 typo
- HW3

Recap

- Online learning, RWM
- Definition + fundamental theorem of statistical learning, motivated efficient algorithms/optimization
- Perceptron

Agenda

- convex relaxations
- convex optimization
- (perhaps) Gradient descent
 - But first some examples of learning problems that fit our model!

Definition: learning from examples w.r.t. hypothesis class

A learning problem: L = (X, Y, H)

- X = Domain of examples (emails, pictures, documents, ...)
- Y = label space (usually, binary Y={-1,1} or {0,1})
- D = distribution over (X,Y) (the world)
- Data access model: learner can obtain i.i.d samples from D
- $H = class of hypothesis: H \subseteq \{X \mapsto Y\}$
- Goal: produce hypothesis h∈ *H* with low *generalization error*

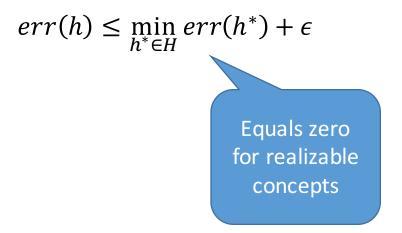
$$err(h) = E_{(x,y)\sim D}[h(x) \neq y]$$

(agnostic) PAC learnability

Learning problem L = (X, Y, H) is (agnostically) PAC-learnable if there exists a learning algorithm (i.e.ERM) s.t. for every $\delta, \epsilon > 0$, there exists $m = f(\epsilon, \delta, H) < \infty$, s.t. after observing S examples, for |S| = m, returns a hypothesis $h \in H$, such that with probability at least

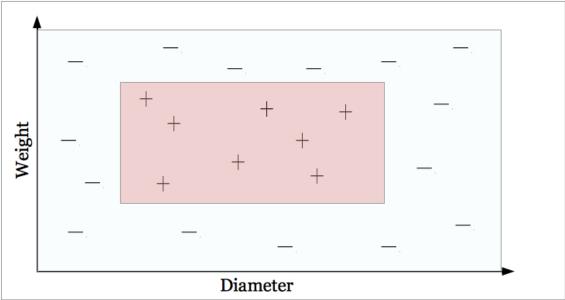
$$1 - \delta$$

it holds that



Examples

- Apple factory:
 - Apples are sweet (box) or sour (for export)
 - Features of apples: weight and diameter
 - Weight, diameter are distributed uniformly at random in a certain range
 - X,Y = ?
 - Reasonable hypothesis class?
 - Realizable?



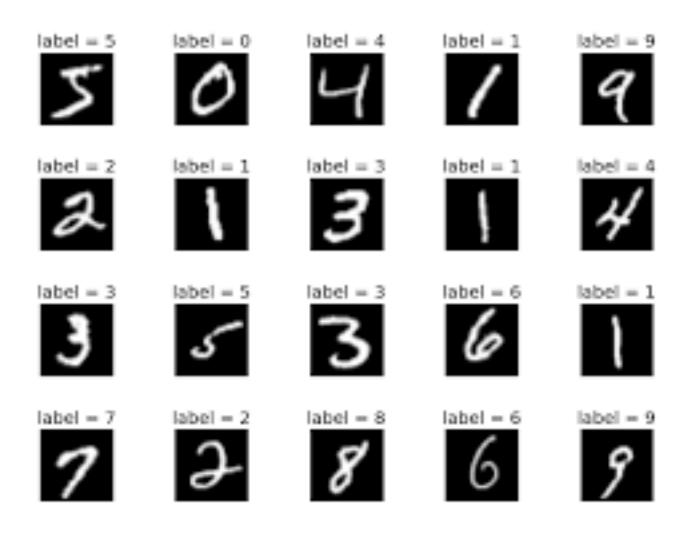
Examples: MPG prediction

• X,Y,H = ?

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good		low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Examples

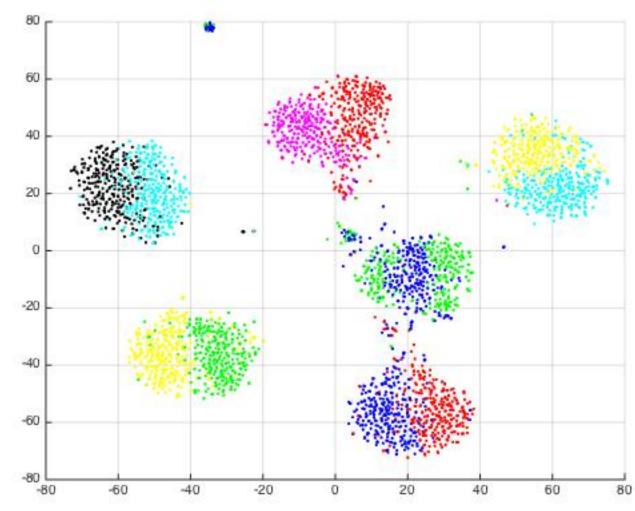
- Character recognition
 - X,Y = ?
 - Reasonable hypothesis class?
 - Realizable?



Examples

- Spam detection:
 - X,Y = ?
 - Reasonable hypothesis class?
 - Realizable?
- Chair classification
- Gene association w. diseases

Empirically: the world is many times linearlyseparable



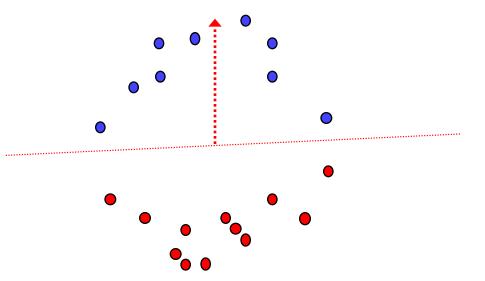
Linear classifiers

Domain = vectors over Euclidean space R^d

Hypothesis class: all hyperplanes that classify according to:

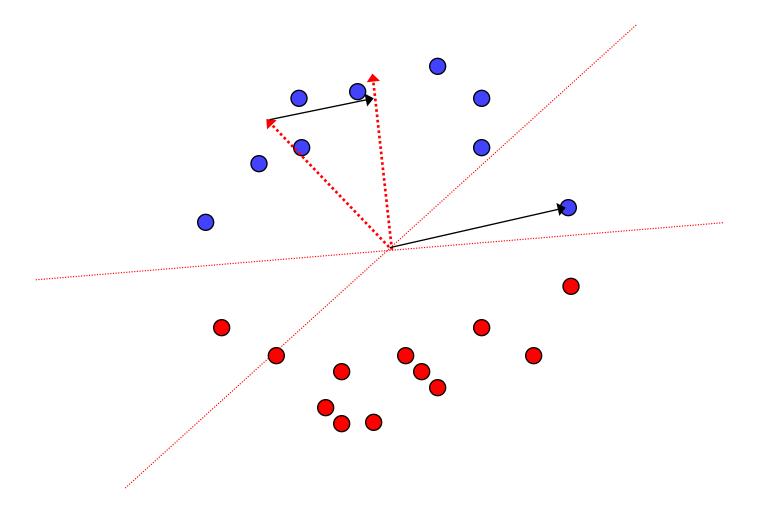
$$h(x) = sign(w^{\mathsf{T}}x - b)$$

(we usually ignore b – the bias, it is 0 almost w.l.o.g.)



The Perceptron Algorithm

[Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969]



The Perceptron Algorithm

Iteratively:

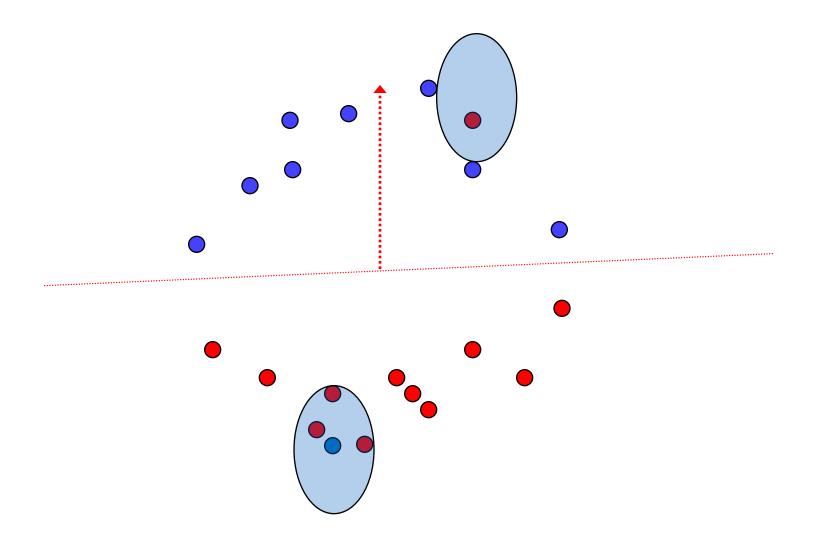
- 1. Find vector x_i for which sign $(w^T x_i) \neq y_i$
- 2. Add x_i to w:

 $w_{t+1} \leftarrow w_t + y_i x_i$

The Perceptron Algorithm

Reminder: Thm [Novikoff 1962]: for data with margin ϵ , perceptron returns separating hyperplane in $\frac{1}{\epsilon^2}$ iterations

Noise?



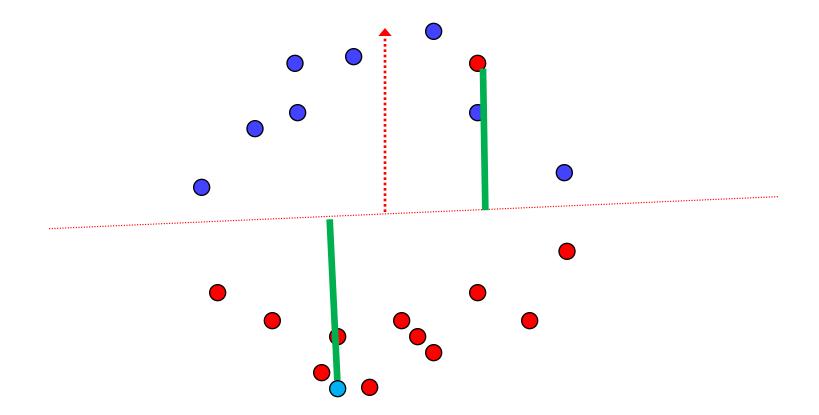
ERM for noisy linear separators?

Given a sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, find hyperplane (through the origin w.l.o.g) such that:

$$w = \arg\min_{|w| \le 1} |\{i \text{ s.t. } sign(w^T x_i) \neq y_i\}|$$

- NP-hard!
- → convex relaxation + optimization!

Noise – minimize sum of weighted violations



Soft-margin SVM (support vector machines)

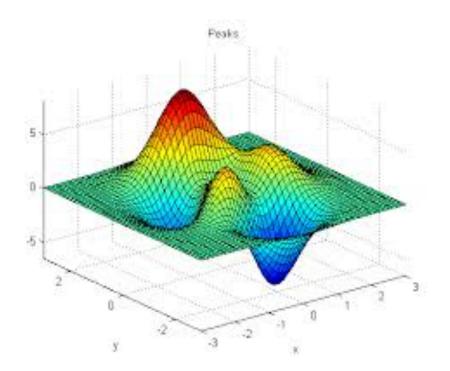
Given a sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, find hyperplane (through the origin w.l.o.g) such that:

$$w = \underset{|w| \le 1}{\operatorname{argmin}} \left\{ \frac{1}{m} \sum_{i} \max\{0, 1 - y_i w^{\mathsf{T}} x_i\} \right\}$$

- Efficiently solvable by greedy algorithm gradient descent
- More general methodology: convex optimization
- Next few lectures: optimization theory & algorithms!

Mathematical optimization

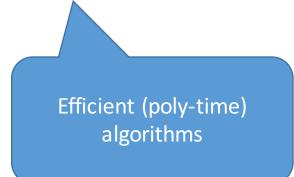
Input: function $f: K \mapsto R$, for $K \subseteq R^d$ Output: point $x \in K$, such that $f(x) \leq f(y) \forall y \in K$



Mathematical optimization

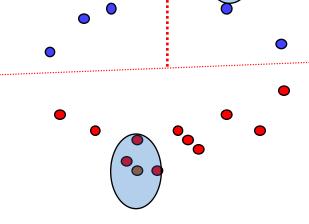
Posks

- Continuous functions (back to calculus, derivatives, differentiability, ...)
- Vs. combinatorial optimization as in graph algorithms (strong connection)
- Studied since early 1900's , lots of work in soviet union (central optimization, resource allocation, military applications, etc.)
- Special cases: linear programming, convex optimization, max flow in graphs



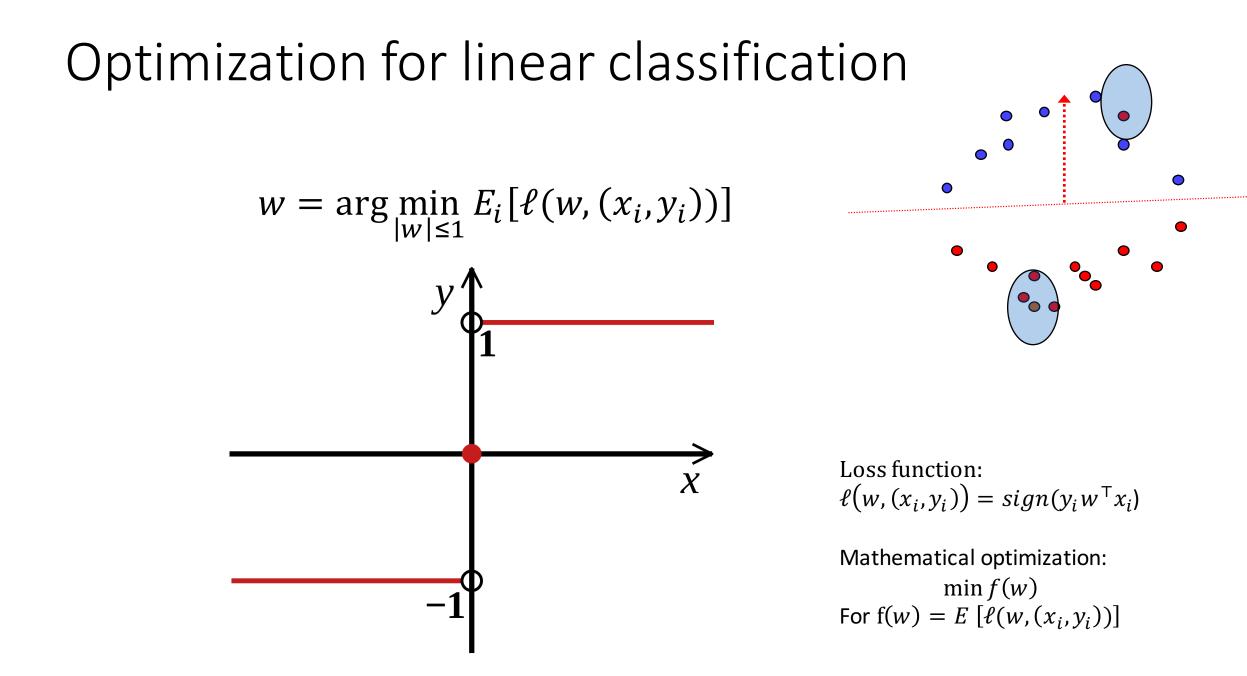
Optimization for linear classification

Given a sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$, find hyperplane (through the origin w.l.o.g) such that:



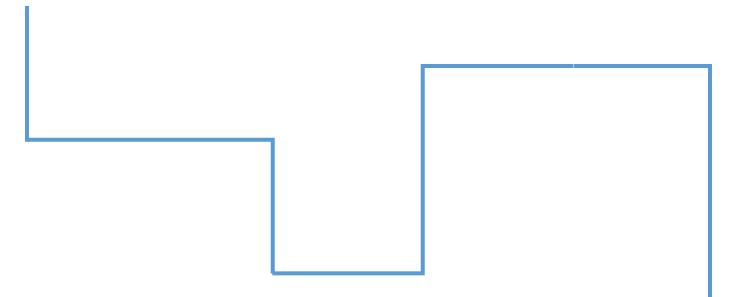
 $w = \arg \min_{|w| \le 1} \# \text{ of mistakes}$



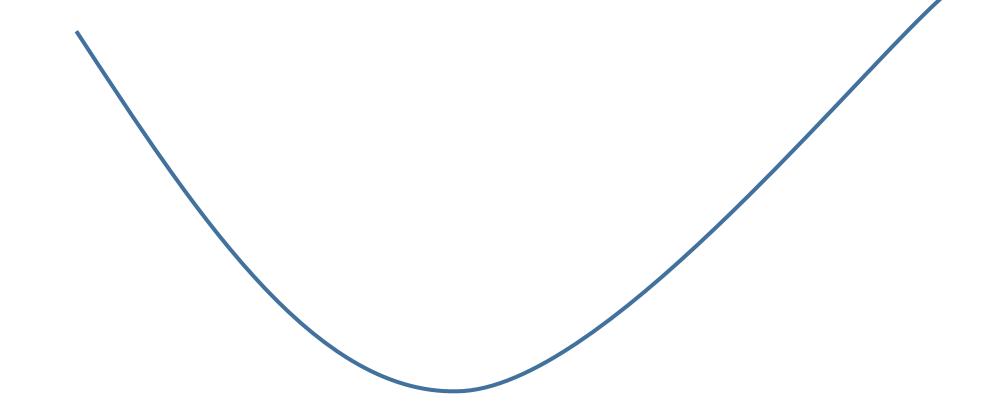


Minimization can be hard

Sum of signs \rightarrow hard

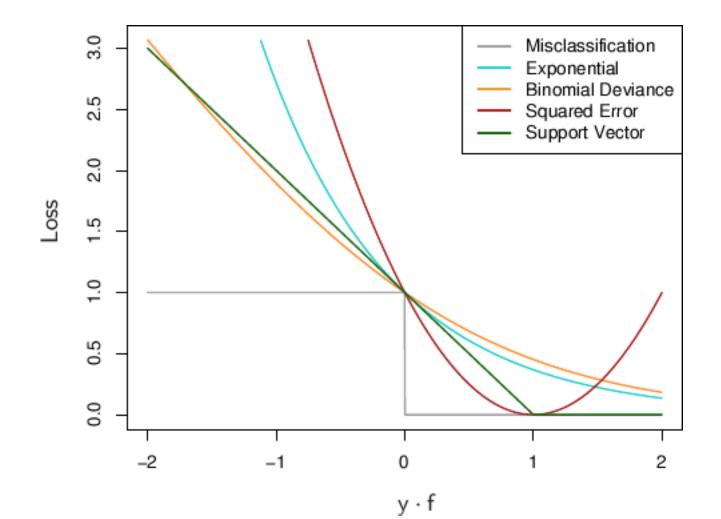


Convex functions: local \rightarrow global



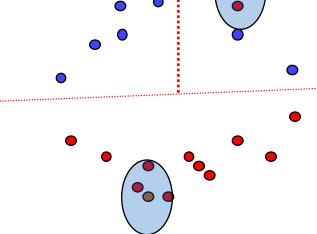
Sum of convex functions \rightarrow also convex

Convex relaxation for 0-1 loss



Convex relaxation for linear classification

$$w = \arg\min_{|w| \le 1} |\{i \text{ s.t. } sign(w^T x_i) \neq y_i\}|$$



 $w = \arg \min_{|w| \le 1} \ell(w^{\top} x_i, y_i)$ such as:

- 1. Ridge / linear regression $\ell(w^{\top}x_i, y_i) = (w^{\top}x_i y_i)^2$
- 2. SVM $\ell(w^{\top}x_i, y_i) = \max\{0, 1 y_i \ w^{\top}x_i\}$
- 3. Logistic regression $\ell(w^{\top}x_i, y_i) = \log(1 + e^{y_i w^{\top}x_i})$

Small recap

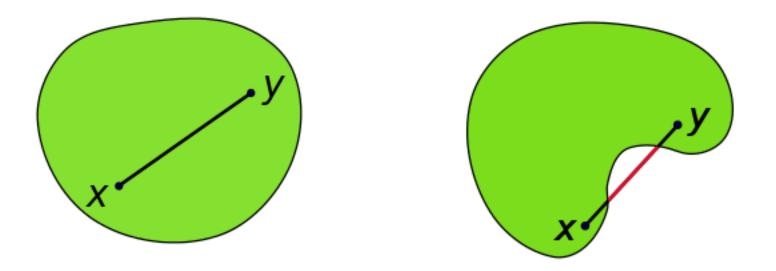
- Finding linear classifiers: formulated as mathematical optimization
- Convexity: property that allows local greedy algorithms
- Formulate convex relaxations to linear classification

Next:

- Convex analysis
- Algorithms for convex optimization

Convexity

A set $f: K \subseteq \mathbb{R}^d$ is convex if and only if for every $x, y \in K$, the segment $[x, y] \in K$ is also in K. That is, for every $\alpha \in [0,1]$, the **convex combination** $\alpha x + (1 - \alpha) y$ is in K.

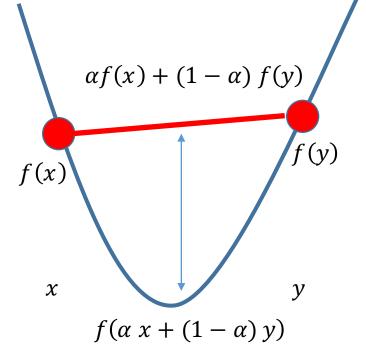


Convexity

A function $f: \mathbb{R}^d \mapsto \mathbb{R}$ is convex if and only if for every $\alpha \in [0,1]$:

$$f(\alpha x + (1 - \alpha) y) \le \alpha f(x) + (1 - \alpha) f(y)$$

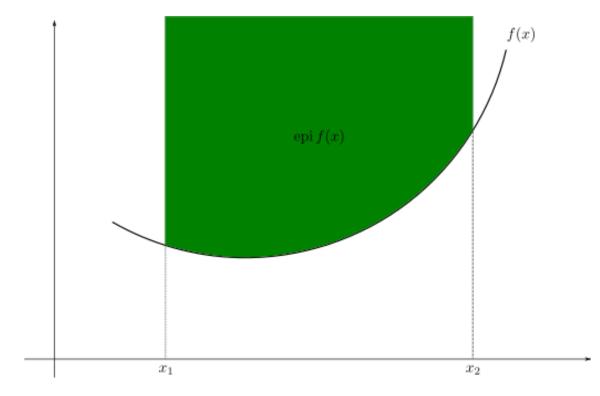
• Informally: smiley 😳



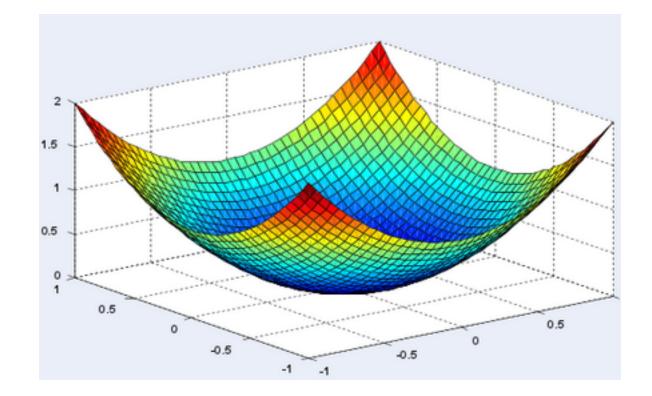
Epigraph

A function $f: \mathbb{R}^d \mapsto \mathbb{R}$ is convex if and only if its epigraph is a convex set:

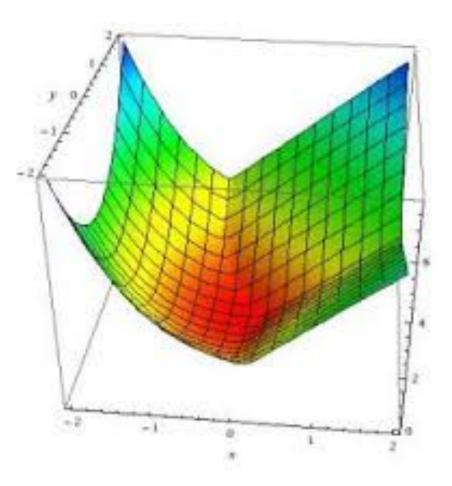
 $Epigraph(f) = \{(x, y) | f(x) \le y\}$



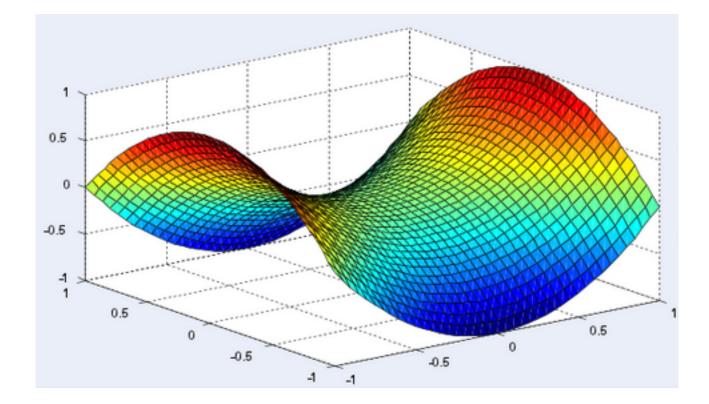
Convex and general functions



Convex and general functions



Convex and general functions



Convexity: local \rightarrow global

- Theorem: for f convex, every local minimum is a global minimum
- Global minimum = smallest point according to f
- Local minimum: everyone around the point is larger.
- Formally:

$$B_r(x) = \{y: |x - y| \le r\}$$

• X is local min if exists r>0 such that

 $\forall y \in B_r(x).f(y) \ge f(x)$

Theorem: f convex, every local minimum is a global minimum

• local min: x, exists r>0 such that

$$\forall y \in B_r(x). f(y) \ge f(x)$$

• Thus for every v, there exists some very very small $\alpha > 0$, such that $x + \alpha(v - x) \in B_r(x)$, and thus

 $f(x) \le f(x + \alpha(v - x))$ $= f((1 - \alpha)x + \alpha v)$ $\le (1 - \alpha)f(x) + \alpha f(v)$ $\alpha f(x) \le \alpha f(v)$

• Thus,

This holds for every v, and thus x is a global minimum.

Summary

- Motivation: linear classification with noise is NP-hard
- Thus we have convex relaxation (i.e. SVM), for which we have efficient algorithms
- Started the theory of mathematical & convex optimization