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Admin

• Survey:	
• Mic
• Examples	
• Theory	vs.	implementation	standoff
• Too	slow/fast/just-right	standoff	(and	also	easy/hard)	
• Ex1	Q2	typo

• HW3



Recap

• Online	learning,	RWM
• Definition	+	fundamental	theorem	of	statistical	learning,	motivated	
efficient	algorithms/optimization
• Perceptron	



Agenda

• convex	relaxations
• convex	optimization
• (perhaps)	Gradient	descent

• But	first	– some	examples	of	learning	problems	that	fit	our	model!



Definition:	learning	from	examples	w.r.t.	
hypothesis	class
A	learning	problem:		𝐿 = (𝑋,𝑌,𝐻)
• X	=	Domain	of	examples	(emails,	pictures,	documents,	…)	
• Y	=	label	space	(usually,	binary	Y={-1,1}	or	{0,1})
• D	=	distribution	over	(X,Y)	(the	world)	
• Data	access	model:	learner	can	obtain	i.i.d samples	from	D
• H	=	class	of	hypothesis:	𝐻 ⊆ {𝑋 ↦ 𝑌}
• Goal:	produce	hypothesis	h∈ 𝐻	with	low	generalization	error

𝑒𝑟𝑟 ℎ = 𝐸 3,4 ∼6	[ℎ 𝑥 ≠ 𝑦]



(agnostic)	PAC	learnability

Learning	problem	𝐿 = (𝑋,𝑌,𝐻)	is	(agnostically)	PAC-learnable if	there	exists	a	learning	algorithm	
(i.e.ERM)	s.t.	for	every	𝛿, 𝜖 > 0,	there	exists		m = 𝑓 𝜖, 𝛿,𝐻 < ∞,	s.t. after	observing	S	examples,	for	
𝑆 = 𝑚,	returns	a	hypothesis	ℎ ∈ 𝐻	,	such	that	with	probability	at	least

1 − 𝛿
it	holds	that	

𝑒𝑟𝑟 ℎ ≤ min
R∗∈T

𝑒𝑟𝑟 ℎ∗ + 𝜖

Equals	zero	
for	realizable	
concepts



Examples

• Apple	factory:
• Apples	are	sweet	(box)	or	sour	(for	export)	
• Features	of	apples:	weight	and	diameter
• Weight,	diameter	are	distributed	uniformly	at	random	in	
a	certain	range

• X,Y	=	?	
• Reasonable	hypothesis	class?
• Realizable?	



Examples:	MPG	prediction
• X,Y,H	=	?	 mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Examples

• Character	recognition
• X,Y	=	?	
• Reasonable	hypothesis	class?
• Realizable?	



Examples

• Spam	detection:
• X,Y	=	?	
• Reasonable	hypothesis	class?
• Realizable?	

• Chair	classification
• Gene	association	w.	diseases
• …



Empirically:	the	world	is	many	times	linearly-
separable



Linear	classifiers

Domain	=	vectors	over	Euclidean	space	RW

Hypothesis	class:		all	hyperplanes	that	classify	according	to:

ℎ 𝑥 = 𝑠𝑖𝑔𝑛(𝑤]𝑥	 − 𝑏)

(we	usually	ignore	b	– the	bias,	it	is	0	almost	w.l.o.g.)	



The	Perceptron	Algorithm
[Rosenblatt	1957,	Novikoff 1962,	Minsky&Papert 1969]



The	Perceptron	Algorithm

Iteratively:

1. Find	vector	𝑥_ for	which			 sig𝑛	 𝑤a𝑥_ ≠ 𝑦_
2. Add	𝑥_ to	w:

𝑤bcd	 ← 𝑤b + 	𝑦_𝑥_



The	Perceptron	Algorithm
Reminder:	Thm [Novikoff 1962]:	for	data	with	margin	𝜖,	perceptron	returns	

separating	hyperplane	in	 dfg iterations



Noise?	



ERM	for	noisy	linear	separators?

Given	a	sample	𝑆 = 𝑥d,𝑦d , … , 𝑥i,𝑦i 	,	find	hyperplane	(through	the	origin	w.l.o.g)	such	that:

𝑤 = arg min
k ld

𝑖			s. 𝑡.	 𝑠𝑖𝑔𝑛	(𝑤a𝑥_ ≠ 𝑦_ |

• NP-hard!

• à convex	relaxation	+	optimization!	



Noise	– minimize	sum	of	weighted	violations	



Soft-margin	SVM	(support	vector	machines)

Given	a	sample	𝑆 = 𝑥d,𝑦d , … , 𝑥i,𝑦i 	,	find	hyperplane	(through	the	origin	w.l.o.g)	such	that:

𝑤 = argmin
p ld

1
𝑚qmax{0,1 −𝑦_𝑤]𝑥_}

_

• Efficiently	solvable	by	greedy	algorithm	– gradient	descent	
• More	general	methodology:	convex	optimization	

• Next	few	lectures:	optimization	theory	&	algorithms!	



Mathematical	optimization

Input:			function	𝑓:𝐾 ↦ 𝑅,		for	𝐾 ⊆ 𝑅v

Output:		point	𝑥 ∈ 𝐾,	such	that 𝑓 𝑥 ≤ 𝑓 𝑦 	∀	𝑦 ∈ 𝐾



Mathematical	optimization

• Continuous	functions	(back	to	calculus,	
derivatives,	differentiability,	…)	
• Vs.	combinatorial	optimization	as	in	graph	algorithms	(strong	
connection)
• Studied	since	early	1900’s	,	lots	of	work	in	soviet	union	
(central	optimization,	resource	allocation,	military	applications,	etc.)
• Special	cases:	linear	programming,	convexoptimization,	max	flow	in	
graphs

Efficient	(poly-time)	
algorithms



Optimization	for	linear	classification

Given	a	sample	𝑆 = 𝑥d, 𝑦d ,… , 𝑥i, 𝑦i 	,	find	
hyperplane	(through	the	origin	w.l.o.g)	such	that:

𝑤 = arg min
k ld

# of	mistakes



Optimization	for	linear	classification

𝑤 = arg min
k ld

𝑖			s. 𝑡. 	𝑠𝑖𝑔𝑛	(𝑤a𝑥_ ≠ 𝑦_ |



Optimization	for	linear	classification

𝑤 = arg min
k ld

𝐸_ ℓ(𝑤, 𝑥_,𝑦_ )

Loss	function:
ℓ 𝑤, 𝑥_, 𝑦_ = 𝑠𝑖𝑔𝑛(𝑦_𝑤]𝑥_)

Mathematical	optimization:
min𝑓 𝑤

For	f 𝑤 = 𝐸	 ℓ(𝑤, 𝑥_, 𝑦_ )



Minimization	can	be	hard



Sum	of	signs	à hard



Convex	functions:	local	à global

Sum	of	convex	functions	à also	convex



Convex	relaxation	for	0-1	loss



Convex	relaxation	for	linear	classification

𝑤 = arg min
k ld

ℓ(𝑤]𝑥_,𝑦_) such	as:

1. Ridge	/	linear	regression	ℓ 𝑤]𝑥_, 𝑦_ = 𝑤]𝑥_ − 𝑦_ ~

2. SVM																			 ℓ 𝑤]𝑥_,𝑦_ = max{0,1 − 𝑦_ 	𝑤]𝑥_}
3. Logistic	regression	 ℓ 𝑤]𝑥_,𝑦_ = log	(1 + 𝑒4�k�3�)

𝑤 = arg min
k ld

𝑖			s. 𝑡. 	𝑠𝑖𝑔𝑛	(𝑤a𝑥_ ≠ 𝑦_ |



Small	recap

• Finding	linear	classifiers:	formulated	as	mathematical	optimization
• Convexity:	property	that	allows	local greedy	algorithms
• Formulate	convex	relaxations	to	linear	classification

Next:
• Convex	analysis
• Algorithms	for	convex	optimization



Convexity

A	set	𝑓:𝐾 ⊆ 𝑅v	 is	convex	if	and	only	if	for	every	x, y ∈
𝐾,	the	segment	[x,y] ∈ 𝐾	is	also	in	K.		That	is,	for	every	
𝛼 ∈ [0,1],	the	convex	combination𝛼	𝑥 + (1 − 𝛼)	𝑦
is	in	K.	



Convexity

A	function	𝑓: 𝑅v ↦ 𝑅	 is	convex	if	and	only	if	for	every	
𝛼 ∈ [0,1]:

𝑓 𝛼	𝑥 + (1 − 𝛼)	𝑦 ≤ 𝛼𝑓 𝑥 + (1 − 𝛼)	𝑓 𝑦

• Informally:	smiley	J

𝑓 𝛼	𝑥 + (1 − 𝛼)	𝑦

𝛼𝑓 𝑥 + (1 − 𝛼)	𝑓 𝑦

𝑥 𝑦

𝑓 𝑦
𝑓 𝑥



Epigraph

A	function	𝑓: 𝑅v ↦ 𝑅	 is	convex	if	and	only	if	its	
epigraph	is	a	convex	set:

Epigraph(f)	= 𝑥, 𝑦 𝑓 𝑥 ≤ 𝑦}



Convex	and	general	functions



Convex	and	general	functions



Convex	and	general	functions



Convexity:	local	à global

• Theorem:	for	f	convex,	every	local	minimum	is	a	global	minimum

• Global	minimum	=	smallest	point	according	to	f
• Local	minimum:	everyone	around	the	point	is	larger.	
• Formally:	

B� x = 𝑦:	 |𝑥 − 𝑦| ≤ 𝑟	
• X	is	local	min	if	exists	r>0	such	that	

∀𝑦 ∈ B� x .𝑓 𝑦 ≥ 𝑓(𝑥)



Theorem:	f	convex,	every	local	minimum	is	a	
global	minimum
• local	min:	x,	exists	r>0	such	that	

∀𝑦 ∈ B� x .𝑓 𝑦 ≥ 𝑓(𝑥)
• Thus	for	every	v,	there	exists	some	very	very	small	𝛼 > 0,	such	that	
x + 𝛼 𝑣 − 𝑥 ∈ 𝐵� 𝑥 ,	and	thus	

𝑓 𝑥 ≤ 𝑓 𝑥 + 𝛼 𝑣 − 𝑥
	
= 𝑓 1 − 𝛼 𝑥 + 𝛼𝑣
	
≤ 1− 𝛼 𝑓 𝑥 + 𝛼𝑓(𝑣)

• Thus,
𝛼𝑓 𝑥 ≤ 𝛼𝑓 𝑣

•
This	holds	for	every	v,	and	thus	x	is	a	global	minimum.	



Summary

• Motivation:	linear	classification	with	noise	is	NP-hard
• Thus	we	have	convex	relaxation	(i.e.	SVM),	for	which	we	have	efficient	
algorithms
• Started	the	theory	of	mathematical	&	convex	optimization


