COS324: Introduction to Machine Learning

Lecture 5: Efficient Learning

Prof. Elad Hazan & Prof. Yoram Singer
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Recap & Today

e So far:
1. Online learning model & algorithms

2. PAC learnability: a general model for learning

3. Learnability of finite hypothesis classes

e Today: what can be learned efficiently?
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Learning Theory & the Scientific Method

Noam Chomsky, June 2011:

“It's true there's been a lot of work on trying to ap-
ply statistical models to various linguistic problems. |
think there have been some successes, but a lot of
failures. There is a notion of success... which | think
is novel in the history of science. It interprets success
as approximating unanalyzed data.”
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PAC Learnability

Fix €,6 € (0,1). An hypothesis class H is PAC learnable if there
exists a learning algorithm which receives my (g, 9) i.i.d samples
from any unkown distribution D, and returns an hypothesis h for

which Lp(h) = Pr yop [h(X) # y] < € with probability 1 — 6.

my is termed the sample complexity of learning H



Realizable & Agnostic PAC Learnability

PAC Agnostic PAC

Dist D over X D over X x Y
Truth h*eH not in class, may not exist
Risk Lp(h) = Lp(h) =

Prep [h(x) # h*(x)] Pricy)~o [h(x) # ¥]
Input S={(.n(x)}~D S={(x,y)}~D
Goal Lp(A(S)) <e Lp(A(S)) < minpey Lp(h) +¢
[Sample| | O (log(|#[/0)/e€) O (log(|#1/6)/€)




Infinite Hypothesis Classes

e VC (Vapnik-Chervonenkis) dimension: “effective size” of
hypothesis class (infinite or finite).

e VD dimensions is typically, but not always, equal to number of
weights / parameters.

e Finite classes, VCdim(H) = log |H]|
e Axis-aligned rectangles in R, VCdim(H) = O(d)
e Hyperplanes in RY, VCdim(H) = d + 1

e Polygons in the plane, VCdim(H) = oo



Fundamental Theorem of Statistical Learning
(Without proof)

A realizable learning problem (X, Y, H) is PAC-learnable if and
only if its VC dimension is finite. Furthermore, it is learnable with

sample complexity of

o (VCdim(H) +|og§)

€
using the ERM algorithm, with sample

S={(x1,y»1),.... Xm, Ym)} ~ D of size |S| = m:

Return h = argerrtin {Z Wh(x;) # J/i]}
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Overfitting

Sample complexity:

€

o (VCdim(H) +|Og§>

is tight and explains the phenomenon of overfitting...
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Learning & Overfitting

e We are given examples (x', y') where x' € R and
y' = sin(2mx) + & where £ ~ A/(0,0.05)

e We do not know the form of the function and decide to use
M-degree polynomial to fit the examples
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Taken from Machine Learning and Pattern Recognition, C.M. Bishop



Learning & Overfitting (cont.)

0 1

x

Taken from Machine Learning and Pattern Recognition, C.M. Bishop
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Approximation Error on Unseen Examples

—©— Training
—©— Test

0.5}

ERrns

0 3 M 6 9

Taken from Machine Learning and Pattern Recognition, C.M. Bishop
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Occam's Razor

William of Occam (circa 1287 — 1347), controversial theologian:

“plurality should not be posited without necessity”, i.e. “the
simplest explanation is best explanation”

Modern-day version in Learning-Theoretic notation:

Theorem: A realizable learning problem £ = (X, ), H) is
PAC-learnable if and only if its VC-dimension is finite, in which
case it is learnable with sample complexity

o (dim(H);— log é)

using the ERM algorithm.
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Complex Hypothesis Classes

Python programs of <= 10000 bytes:

|H| ~ 1000010000

€ £

L log |H|+log &
sample complexity is O <°9||+°95> ~ O(2%9K) _ not too bad!

Can we find an efficient learning algorithm?

Is learning equivalent to the halting problem?

The main issue with PAC learning is computational efficiency

Next topic: hypothesis classes that permit efficient learning
through convex optimization
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Efficiently Learnabble Hypothesis Spaces

Boolean formulae

Table: default

X2 | X3 | Xq | F(X)

X1

170]0]1 0
0O|l1]07]O0 1
Oj1|1]0 1
17111 0

f(X) = X4 N Xo A\ Xq

(Homework...)
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Linear Classifiers

e Domain: Euclidean space x € X = R

e Hypothesis class: thresholding of linear predictors

hw(x) = sign (w - x — b)

b is called a bias term. Assume it is zero w.l.0.g.
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Practical Importance of Linear Classifiers

Many phenomena in nature are close to being linearly separable

80 60 40 20 0 20 40 60 80
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Linear Classification: Learnability
Theorem the sample complexity of learning linear classifiers is

o (d—l—log%)
€

since VCdim(H) =d + 1
e Reduction to finite hypothesis class: Let H be all hyperplanes in
R? with norm at most one and precision ¢,

H = {sign(w-x) | |w| <1, w=(en,en,..., €ng) 1 nj € L}

1 d
7| ~ (5)

e From learnability of finite hypothesis classes, linear classifiers are
learnable with sample complexity

o dlog%—i-%
€

~

N
w



Linear Classification: Algorithmic Intractability

e ERM amounts to: given m vectors, x!, ..., x" € RY and m
labels y?t, ..., y™ e {—1,+1} find a linear classifier w such that

Vi, sign (w-x') =y’

e Reduces to linear programming, assuming realizability

e Without realizability, finding w which minimizes disagreement
sign (w - x') # y' is NP-hard
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The Perceptron Algorithm

[terate:

1. Find vector x’ such that sign(w - x') # y/

2. Add x' to w:
Wit wt i
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Classification Margin
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Classification Margin
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The Perceptron Algorithm

Theorem (Novikoff 1962)

The perceptron algorithm returns a separating hyperplane for a
realizable set of examples after at most 1/ iterations, where -y
is the margin of the examples.



Analysis of The Perceptron Algorithm
Let w* be the optimal hyperplane such that Vi, y'w*x’ >y

From the Perceptron update we get the following two inequalities:

Wt+1 W= (wt +yixt) cwt
>wh-w* 1y
w2 = [lw® + y'xE1?
= [lw[1? + y i w o lyxE?
< wflP?+1

Thus, .
w
1> =ty
fwe ™ \/
1
72

And conclude that,
t <

N
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Summary

e Overfitting, Occam'’s razor, theory of theories...
e main bottleneck: computational!

e |earning hyperplanes

Next time: a general framework for efficient learning
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