COS324: Introduction to Machine Learning Lecture 5: Efficient Learning

Prof. Elad Hazan & Prof. Yoram Singer

Recap & Today

- So far:
 - 1. Online learning model & algorithms
 - 2. PAC learnability: a general model for learning
 - 3. Learnability of finite hypothesis classes
- Today: what can be learned efficiently?

Learning Theory & the Scientific Method

Noam Chomsky, June 2011:

"It's true there's been a lot of work on trying to apply statistical models to various linguistic problems. I think there have been some successes, but a lot of failures. There is a notion of success... which I think is novel in the history of science. It interprets success as approximating unanalyzed data."

PAC Learnability

Fix $\varepsilon, \delta \in (0, 1)$. An hypothesis class \mathcal{H} is PAC learnable if there exists a learning algorithm which receives $m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d samples from any unkown distribution \mathcal{D} , and returns an hypothesis h for which $\mathcal{L}_{\mathcal{D}}(h) = \Pr_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[h(\mathbf{x}) \neq \mathbf{y} \right] \leq \varepsilon$ with probability $1 - \delta$.

 $m_{\mathcal{H}}$ is termed the sample complexity of learning \mathcal{H}

Realizable & Agnostic PAC Learnability

	PAC	Agnostic PAC	
Dist	${\cal D}$ over ${\cal X}$	${\mathcal D}$ over ${\mathcal X} imes {\mathcal Y}$	
Truth	$h^\star \in \mathcal{H}$	not in class, may not exist	
Risk	$\mathcal{L}_{\mathcal{D}}(h) = $ $Pr_{x \sim \mathcal{D}}\left[h(x) \neq h^{\star}(x)\right]$	$\mathcal{L}_{\mathcal{D}}(h) = \Pr_{(\mathbf{x}, y) \sim \mathcal{D}} [h(\mathbf{x}) \neq y]$	
Input	$S = \{(\mathbf{x}^i, h^*(\mathbf{x}^i))\} \sim \mathcal{D}$	$S = \{(\mathbf{x}^i, y^i)\} \sim \mathcal{D}$	
Goal	$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) \leq arepsilon$	$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) \leq \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) + \varepsilon$	
Sample	$O\left(\log(\mathcal{H} /\delta)/arepsilon ight)$	$O\left(\log(\mathcal{H} /\delta)/arepsilon^2 ight)$	

Infinite Hypothesis Classes

- VC (Vapnik-Chervonenkis) dimension: "effective size" of hypothesis class (infinite or finite).
- VD dimensions is typically, but not always, equal to number of weights / parameters.
- Finite classes, $VC \dim(H) = \log |H|$
- Axis-aligned rectangles in \mathbb{R}^d , VC dim(H) = O(d)
- Hyperplanes in \mathbb{R}^d , VC dim(H) = d + 1
- Polygons in the plane, $VC \dim(H) = \infty$

Fundamental Theorem of Statistical Learning

(Without proof)

A realizable learning problem $(\mathcal{X}, \mathcal{Y}, \mathcal{H})$ is PAC-learnable if and only if its VC dimension is finite. Furthermore, it is learnable with sample complexity of

$$O\left(\frac{\mathsf{VC}\,\mathsf{dim}(H) + \log\frac{1}{\delta}}{\varepsilon}\right)$$

using the ERM algorithm, with sample

$$S = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)\} \sim \mathcal{D} \text{ of size } |S| = m$$
:

Return
$$\hat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \left\{ \sum_{i \in \mathcal{S}} \mathbb{1}[h(\mathbf{x}_i) \neq y_i] \right\}$$

Overfitting

Sample complexity:

$$O\left(\frac{\mathsf{VC}\,\mathsf{dim}(H) + \log\frac{1}{\delta}}{\varepsilon}\right)$$

is tight and explains the phenomenon of overfitting...

Learning & Overfitting

- We are given examples (x^i, y^i) where $x^i \in \mathbb{R}$ and $y^i = \sin(2\pi x) + \xi$ where $\xi \sim \mathcal{N}(0, 0.05)$
- We do not know the form of the function and decide to use M-degree polynomial to fit the examples

Taken from Machine Learning and Pattern Recognition, C.M. Bishop

Learning & Overfitting (cont.)

Taken from Machine Learning and Pattern Recognition, C.M. Bishop

Approximation Error on Unseen Examples

Taken from Machine Learning and Pattern Recognition, C.M. Bishop

Occam's Razor

William of Occam (circa 1287 — 1347), controversial theologian: "plurality should not be posited without necessity", i.e. "the simplest explanation is best explanation"

Modern-day version in Learning-Theoretic notation:

Theorem: A realizable learning problem $\mathcal{L}=(\mathcal{X},\mathcal{Y},\mathcal{H})$ is PAC-learnable if and only if its VC-dimension is finite, in which case it is learnable with sample complexity

$$O\left(\frac{\dim(H) + \log\frac{1}{\delta}}{\varepsilon}\right)$$

using the ERM algorithm.

Complex Hypothesis Classes

• Python programs of <= 10000 bytes:

$$|H| \approx 10000^{10000}$$

sample complexity is
$$O\left(\frac{\log |H| + \log \frac{1}{\delta}}{\varepsilon}\right) \approx O(\frac{50K}{\varepsilon})$$
 - not too bad!

- Can we find an efficient learning algorithm?
- Is learning equivalent to the halting problem?
- The main issue with PAC learning is computational efficiency
- Next topic: hypothesis classes that permit efficient learning through convex optimization

Efficiently Learnabble Hypothesis Spaces

Boolean formulae

Table: default

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	$ f(\mathbf{x}) $
1	0	0	1	0
0	1	0	0	1
0	1	1	0	1
1	1	1	1	0

$$f(\mathbf{x}) = \bar{x}_4 \wedge x_2 \wedge \bar{x}_1$$

(Homework...)

Linear Classifiers

- Domain: Euclidean space $\mathbf{x} \in \mathcal{X} = \mathbb{R}^d$
- Hypothesis class: thresholding of linear predictors

$$h_{\mathsf{w}}(x) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} - b\right)$$

b is called a bias term. Assume it is zero w.l.o.g.

Practical Importance of Linear Classifiers

Many phenomena in nature are close to being linearly separable

Linear Classification: Learnability

Theorem the sample complexity of learning linear classifiers is

$$O\left(\frac{d + \log\frac{1}{\delta}}{\varepsilon}\right)$$

since $VC \dim(H) = d + 1$

• Reduction to finite hypothesis class: Let \mathcal{H} be all hyperplanes in \mathbb{R}^d with norm at most one and precision ε ,

$$\mathcal{H} = \{ \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}) \mid ||\mathbf{w}|| \le 1, \ \mathbf{w} = (\varepsilon n_1, \varepsilon n_2, \dots, \varepsilon n_d) : n_j \in \mathbb{Z} \}$$
$$|\mathcal{H}| \approx \left(\frac{1}{\varepsilon}\right)^d$$

 From learnability of finite hypothesis classes, linear classifiers are learnable with sample complexity

$$O\left(\frac{d\log\frac{1}{\varepsilon} + \frac{1}{\delta}}{\varepsilon}\right)$$

Linear Classification: Algorithmic Intractability

• ERM amounts to: given m vectors, $\mathbf{x}^1, \dots, \mathbf{x}^m \in \mathbb{R}^d$ and m labels $y^1, \dots, y^m \in \{-1, +1\}$ find a linear classifier \mathbf{w} such that

$$\forall i$$
, sign $(\mathbf{w} \cdot \mathbf{x}^i) = y^i$

- Reduces to linear programming, assuming realizability
- Without realizability, finding **w** which minimizes disagreement sign $(\mathbf{w} \cdot \mathbf{x}^i) \neq y^i$ is NP-hard

The Perceptron Algorithm

Iterate:

- 1. Find vector \mathbf{x}^i such that $sign(\mathbf{w} \cdot \mathbf{x}^i) \neq y^i$
- 2. Add \mathbf{x}^i to \mathbf{w} :

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + y^i \mathbf{x}^i$$

Classification Margin

Classification Margin

Classification Margin

The Perceptron Algorithm

Theorem (Novikoff 1962)

The perceptron algorithm returns a separating hyperplane for a realizable set of examples after at most $1/\gamma^2$ iterations, where γ is the margin of the examples.

Analysis of The Perceptron Algorithm

Let \mathbf{w}^* be the optimal hyperplane such that $\forall i$, $y^i\mathbf{w}^*\mathbf{x}^i \geq \gamma$

From the Perceptron update we get the following two inequalities:

$$\mathbf{w}^{t+1} \cdot \mathbf{w}^* = (\mathbf{w}^t + y^i \mathbf{x}^t) \cdot \mathbf{w}^*$$

 $\geq \mathbf{w}^t \cdot \mathbf{w}^* + \gamma$

$$\|\mathbf{w}^{t+1}\|^{2} = \|\mathbf{w}^{t} + y^{i}\mathbf{x}^{t}\|^{2}$$

$$= \|\mathbf{w}^{t}\|^{2} + y^{t}\mathbf{x}^{t} \cdot \mathbf{w}^{t} + \|y\mathbf{x}^{t}\|^{2}$$

$$\leq \|\mathbf{w}^{t}\|^{2} + 1$$

Thus,

$$1 \geq \frac{\mathbf{w}^t}{\|\mathbf{w}^t\|} \mathbf{w}^* \geq \frac{t\gamma}{\sqrt{t}} = \sqrt{t}\gamma$$

And conclude that,

$$t \leq \frac{1}{\gamma^2}$$

Summary

- Overfitting, Occam's razor, theory of theories...
- main bottleneck: computational!
- Learning hyperplanes

Next time: a general framework for efficient learning