
COS324: Introduction to Machine Learning
Lecture 5: Efficient Learning
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Recap & Today

• So far:
1. Online learning model & algorithms

2. PAC learnability: a general model for learning

3. Learnability of finite hypothesis classes

• Today: what can be learned efficiently?
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Learning Theory & the Scientific Method

Noam Chomsky, June 2011:

“It’s true there’s been a lot of work on trying to ap-
ply statistical models to various linguistic problems. I
think there have been some successes, but a lot of
failures. There is a notion of success... which I think
is novel in the history of science. It interprets success
as approximating unanalyzed data.”
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PAC Learnability

Fix ε, δ ∈ (0, 1). An hypothesis class H is PAC learnable if there
exists a learning algorithm which receives mH(ε, δ) i.i.d samples
from any unkown distribution D, and returns an hypothesis h for
which LD(h) = Pr(x,y)∼D [h(x) 6= y ] ≤ ε with probability 1− δ.

mH is termed the sample complexity of learning H

4 / 23



Realizable & Agnostic PAC Learnability

PAC Agnostic PAC

Dist D over X D over X × Y

Truth h? ∈ H not in class, may not exist

Risk LD(h) = LD(h) =

Prx∼D [h(x) 6= h?(x)] Pr(x,y)∼D [h(x) 6= y ]

Input S = {(xi , h?(xi))} ∼ D S = {(xi , y i)} ∼ D

Goal LD(A(S)) ≤ ε LD(A(S)) ≤ minh∈H LD(h) + ε

|Sample| O (log(|H|/δ)/ε) O
(

log(|H|/δ)/ε2
)
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Infinite Hypothesis Classes

• VC (Vapnik-Chervonenkis) dimension: “effective size” of
hypothesis class (infinite or finite).

• VD dimensions is typically, but not always, equal to number of
weights / parameters.

• Finite classes, VC dim(H) = log |H|

• Axis-aligned rectangles in Rd , VC dim(H) = O(d)

• Hyperplanes in Rd , VC dim(H) = d + 1

• Polygons in the plane, VC dim(H) =∞
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Fundamental Theorem of Statistical Learning

(Without proof)

A realizable learning problem (X ,Y,H) is PAC-learnable if and
only if its VC dimension is finite. Furthermore, it is learnable with
sample complexity of

O

(
VC dim(H) + log 1δ

ε

)

using the ERM algorithm, with sample

S = {(x1, y1), ..., (xm, ym)} ∼ D of size |S| = m:

Return ĥ = arg min
h∈H

{∑
i∈S

1[h(xi) 6= yi ]

}
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Overfitting

Sample complexity:

O

(
VC dim(H) + log 1δ

ε

)

is tight and explains the phenomenon of overfitting...
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Learning & Overfitting
• We are given examples (x i , y i) where x i ∈ R and
y i = sin(2πx) + ξ where ξ ∼ N (0, 0.05)

• We do not know the form of the function and decide to use
M-degree polynomial to fit the examples

Taken from Machine Learning and Pattern Recognition, C.M. Bishop
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Learning & Overfitting (cont.)

Taken from Machine Learning and Pattern Recognition, C.M. Bishop
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Approximation Error on Unseen Examples

Taken from Machine Learning and Pattern Recognition, C.M. Bishop
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Occam’s Razor

William of Occam (circa 1287 — 1347), controversial theologian:
“plurality should not be posited without necessity”, i.e. “the
simplest explanation is best explanation”

Modern-day version in Learning-Theoretic notation:

Theorem: A realizable learning problem L = (X ,Y,H) is
PAC-learnable if and only if its VC-dimension is finite, in which
case it is learnable with sample complexity

O

(
dim(H) + log 1δ

ε

)

using the ERM algorithm.
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Complex Hypothesis Classes

• Python programs of <= 10000 bytes:

|H| ≈ 1000010000

sample complexity is O
(
log |H|+log 1

δ
ε

)
≈ O(50Kε ) - not too bad!

• Can we find an efficient learning algorithm?

• Is learning equivalent to the halting problem?

• The main issue with PAC learning is computational efficiency

• Next topic: hypothesis classes that permit efficient learning
through convex optimization
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Efficiently Learnabble Hypothesis Spaces

Boolean formulae

Table: default

x1 x2 x3 x4 f (x)

1 0 0 1 0
0 1 0 0 1
0 1 1 0 1
1 1 1 1 0

f (x) = x̄4 ∧ x2 ∧ x̄1
(Homework...)
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Linear Classifiers
• Domain: Euclidean space x ∈ X = Rd

• Hypothesis class: thresholding of linear predictors

hw(x) = sign (w · x− b)

w

−

−
−

−
+

+
+

b is called a bias term. Assume it is zero w.l.o.g.
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Practical Importance of Linear Classifiers

Many phenomena in nature are close to being linearly separable

16 / 23



Linear Classification: Learnability
Theorem the sample complexity of learning linear classifiers is

O

(
d + log 1δ

ε

)
since VC dim(H) = d + 1

• Reduction to finite hypothesis class: Let H be all hyperplanes in
Rd with norm at most one and precision ε,

H = {sign(w · x) | ‖w‖ ≤ 1, w = (εn1, εn2, . . . , εnd) : nj ∈ Z}

|H| ≈
(

1

ε

)d
• From learnability of finite hypothesis classes, linear classifiers are
learnable with sample complexity

O

(
d log 1ε + 1

δ

ε

)
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Linear Classification: Algorithmic Intractability

• ERM amounts to: given m vectors, x1, . . . , xm ∈ Rd and m
labels y1, . . . , ym ∈ {−1,+1} find a linear classifier w such that

∀i , sign
(
w · xi

)
= y i

• Reduces to linear programming, assuming realizability

• Without realizability, finding w which minimizes disagreement
sign

(
w · xi

)
6= y i is NP-hard
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The Perceptron Algorithm

Iterate:

1. Find vector xi such that sign(w · xi) 6= y i

2. Add xi to w:
wt+1 ← wt + y ixi
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The Perceptron Algorithm

Theorem (Novikoff 1962)
The perceptron algorithm returns a separating hyperplane for a
realizable set of examples after at most 1/γ2 iterations, where γ
is the margin of the examples.
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Analysis of The Perceptron Algorithm
Let w∗ be the optimal hyperplane such that ∀i , y iw∗xi ≥ γ
From the Perceptron update we get the following two inequalities:

wt+1 ·w∗ = (wt + y ixt) ·w∗

≥ wt ·w∗ + γ

‖wt+1‖2 = ‖wt + y ixt‖2

= ‖wt‖2 + y txt ·wt + ‖yxt‖2

≤ ‖wt‖2 + 1

Thus,

1 ≥
wt

‖wt‖w
∗ ≥

tγ√
t

=
√
tγ

And conclude that,

t ≤
1

γ2

22 / 23



Summary

• Overfitting, Occam’s razor, theory of theories...

• main bottleneck: computational!

• Learning hyperplanes

Next time: a general framework for efficient learning
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