
COS324: Introduction to Machine Learning
Lecture 4: PAC Learning - Part II

Prof. Elad Hazan & Prof. Yoram Singer

1 / 23



Recap & Today

• Notion of batch learning

• Identically, independently, distributed (i.i.d) samples from D

• Probably Approximately Correct learning

• PAC learnability with finite hypothesis classes

• Agnostic PAC learnability

• Agnostic learning of finite hypothesis classes

• Infinite hypothesis classes
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PAC Learning

• Accuracy, ε, and confidence, δ, parameters

• Training data, S, of m(ε, δ) = |S| i.i.d samples from an
unknown distribution D

• Find an hypothesis h s.t.

LD(h) ≤ ε

︸︷︷︸
≈

w.p. 1− δ︸ ︷︷ ︸
X

• Q.1 What candidate hypotheses for h to consider?

• Q.2 How to asses LD(h)
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Perils of Lack of (Prior) Knowledge

• Suppose |X | is infinite

• Pick an arbitrarily large m

• R is a random set of examples of size 2m

• Define D(x) = 1
2m if x ∈ S and 0 o.w.

• Set S to m random samples from R according to D

• Number of unique instances in S is at most m

• Suppose H consists of all functions from X to {−1,+1}

• Any learning algorithm can only guess the labels of R − S

• Since |R−S| ≥ m error of predicted hypothesis would have an
error rate of about 1/4 (in expectation)

• Need to constrain the hypothesis class H
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Finite Hypothesis Classes

• Assume that H has finite number of hypotheses
• X = {−1, 1}n, Y = {0,+1}, and H is all truth tables

• Linear thresholds of the form sign(w · x) with wj = i
j , i , j ∈ [k ]

• All Python functions that take at most b1 bytes and with memory
of b2 bytes (very large but finite) with inputs over {0, 1}32

• Distinguish between the following cases:
• Realizable: h? ∈ H such that for all (x, y), h?(x) = y

• Agnostic: not realizable, but either D(+1|x) = 1 or D(−1|x) = 1

• Stochastic: not agnostic, 0 < D(+1|x) < 1 for ”many” x
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H

h?

h?
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Empirical Risk Minimization
• Input: training set S = {(x i , y i)}mi=1

• Realizable case:
• Output: h ∈ H s.t. ∀i , y i = h(x i)

• Unrealizable case:
• Empirical risk:

LS(h) =
1

m

∣∣{i : h(x i) 6= y i}∣∣
• Output:

h = argmin
h∈H
LS(h)

• Can use same ERM procedure

• LS(h) = 0 in realizable case

• Why distinguish between the two settings?
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ERM in Realizable Settings

View ERM as a function that takes H and S as inputs and
returns h ∈ H such that LS(h) = 0

Theorem (Relizable PAC)
Fix ε, δ and assume realizability. If the number of examples

m ≥
log(|H|) + log(1/δ)

ε

then for every D, with probability of at least 1− δ (over the
choice of S of size m),

LD(ERM(S,H)) ≤ ε .
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Proof
• Let LD(h) be the loss of h on (unknown) D
• Note that S is a random set determined by D
• We need to prove that the probability mass of S for which ERM
returns inaccurate hypothesis is at most δ

D({S : LD(ERM(S,H)) > ε}) ≤ δ
• Let HB be the set of “inaccurate” hypotheses,

HB = {h ∈ H : LD(h) > ε}
• Let M be the set of “ill-guiding” samples (set of sets),

M = {S : ∃h ∈ HB,LS(h) = 0}

=
⋃
h∈HB

{S : LS(h) = 0}

• First, note that

{S : LD(ERM(S,H)) > ε} ⊆ M =
⋃
h∈HB

{S : LS(h) = 0}
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Proof (Cont.)

Next we use the Union Bound: for ∀A,B distribution D

D(A ∪ B) ≤ D(A) +D(B)

Therefore, using the union bound

D({S :LD(ERM(S,H)) > ε})

≤
∑
h∈HB

D({S : LS(h) = 0})

≤ |HB| max
h∈HB

D({S : LS(h) = 0})
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Proof (Cont.)

• Next, we use, D({S : LS(h) = 0}) = (1− LD(h))m

• If h ∈ HB then LD(h) > ε and therefore

D({S : LS(h) = 0}) < (1− ε)m

• We showed that,

D({S : LD(ERM(S,H) > ε}) < |HB| (1− ε)m

• Finally, using 1− ε ≤ e−ε and |HB| ≤ |H| we get,

D({S : LD(ERM(S,H) > ε}) < |H| e−εm

• The right-hand side would be ≤ δ if m ≥ log(|H|/δ)
ε
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PAC Learnability

Hypothesis class H is PAC learnable using algorithm A if for all
m ≥ mH(ε, δ), any distribution D over X , then LD(h) ≤ ε with
probability 1− δ where h = A(S,H).

mH is termed the sample complexity of learning H
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Agnostic PAC Learning

• So far, assumed labels are generated by h? ∈ H
• Assumption is often unrealistic

• Instead of D over X let D be a distribution over X × Y
• Replace ∃h? with conditional distribution D(y |x)
• Define risk as:

LD(h)
def
= P(x,y)∼D[h(x) 6= y ]

• Relax notion of “approximately correct”

LD(A(S))− min
h∈H
LD(h) ≤ ε
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Realizable vs. Agnostic
PAC Agnostic PAC

Dist D over X D over X × Y

Truth h? ∈ H not in class, may not exist

Risk LD(h) = LD(h) =

D({x : h(x) 6= h?(x)}) D({(x, y) : h(x) 6= y})

Input {xi}i ∼ Dm {(xi , y i)}i ∼ Dm
∀i , yi = h?(xi)

Goal LD(A(S)) ≤ ε LD(A(S)) ≤ minh∈H LD(h) + ε
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Agnostic PAC

Require that for every ε, δ ∈ (0, 1), m ≥ mH(ε, δ), and
distribution D over X × Y,

D
({

S ∈ (X × Y)m : LD(A(S)) ≤ min
h∈H
LD(h) + ε

})
≥ 1− δ
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Representative Sample

A training set S is called ε-representative if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε

Lemma Assume that a training set S is ε-representative. Then,
the output of ERMH(S),

ĥ ∈ argmin
h∈H

LS(h)

satisfies
LD(ĥ) ≤ min

h∈H
LD(h) + 2ε .
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Representative Sample (Proof)

For every h ∈ H,

LD(ĥ) ≤ LS(ĥ) + ε

≤ LS(h) + ε

≤ LD(h) + ε+ ε

= LD(h) + ε
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Agnostic PAC for Finite Classes

Assume H is finite. Then, H is agnostically PAC learnable using
ERM with sample complexity⌈

2 log(2|H|/δ)
ε2

⌉
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Proof (cont.)

• We need to show

D({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ

• Using the union bound,

D({S : ∃h ∈ H, |LS(h)− LD(h)| > ε})
= D(∪h∈H{S : |LS(h)− LD(h)| > ε})

≤
∑
h∈H
D({S : |LS(h)− LD(h)| > ε})
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Hoeffding’s inequality

Let z1, . . . , zm be a sequence of i.i.d. ∼ B(θ). Denote by

θ̂ = 1
m

m∑
i=1

zi their empirical average. Then, for any ε > 0

P
[∣∣θ̂ − θ∣∣ > ε

]
≤ 2 e−2mε2

This implies:

D({S : |LS(h)− LD(h)| > ε}) ≤ 2 exp
(
−2mε2

)
.
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Concluding

We showed

D({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤ 2 |H| e−2mε2

We want 2 |H| e−2mε2 ≤ δ and therefore,

m ≥
log(2|H|/δ)
2ε2
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Infinite Classes Made Finite

• H is “parameterized” by n numbers

• Assume it’s sufficient to use floating points

• Then |H| ≤ 232n,

mH(ε, δ) ≤
⌈
64n + 2 log(2/δ)

ε2

⌉
• Sample complexity of Õ

(
n
ε2

)
is not too shabby

• However, ERM would take exponential time in the dimension

• In reasonably small ML applications n ≈ 105 ...
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