COS324: Introduction to Machine Learning Lecture 4: PAC Learning - Part II

Prof. Elad Hazan & Prof. Yoram Singer

Recap & Today

- Notion of batch learning
- Identically, independently, distributed (i.i.d) samples from ${\cal D}$
- Probably Approximately Correct learning
- PAC learnability with *finite* hypothesis classes
- Agnostic PAC learnability
- Agnostic learning of finite hypothesis classes
- Infinite hypothesis classes

- Accuracy, ε , and confidence, δ , parameters
- Training data, S, of $m(\varepsilon, \delta) = |S|$ i.i.d samples from an unknown distribution \mathcal{D}
- Find an hypothesis *h* s.t.

$$\mathcal{L}_{\mathcal{D}}(h) \leq \varepsilon$$

- Accuracy, ε , and confidence, δ , parameters
- Training data, S, of $m(\varepsilon, \delta) = |S|$ i.i.d samples from an unknown distribution \mathcal{D}
- Find an hypothesis *h* s.t.

$$\mathcal{L}_{\mathcal{D}}(h) \leq \underbrace{\varepsilon}_{\approx}$$

- Accuracy, ε , and confidence, δ , parameters
- Training data, S, of $m(\varepsilon, \delta) = |S|$ i.i.d samples from an unknown distribution \mathcal{D}
- Find an hypothesis *h* s.t.

$$\mathcal{L}_{\mathcal{D}}(h) \leq \underbrace{arepsilon}_{pprox} ext{ w.p. } 1-\delta$$

- Accuracy, ε , and confidence, δ , parameters
- Training data, S, of $m(\varepsilon, \delta) = |S|$ i.i.d samples from an unknown distribution \mathcal{D}
- Find an hypothesis *h* s.t.

$$\mathcal{L}_{\mathcal{D}}(h) \leq \underbrace{\varepsilon}_{\approx} \quad \text{w.p.} \quad \underbrace{1-\delta}_{\checkmark}$$

- Q.1 What candidate hypotheses for *h* to consider?
- Q.2 How to asses $\mathcal{L}_{\mathcal{D}}(h)$

Perils of Lack of (Prior) Knowledge

- Suppose $|\mathcal{X}|$ is infinite
- Pick an arbitrarily large m
- *R* is a random set of examples of size 2*m*
- Define $\mathcal{D}(\mathbf{x}) = \frac{1}{2m}$ if $x \in S$ and 0 o.w.
- Set S to m random samples from R according to $\mathcal D$
- Number of unique instances in S is at most m
- Suppose ${\mathcal H}$ consists of all functions from ${\mathcal X}$ to $\{-1,+1\}$
- Any learning algorithm can only guess the labels of R-S
- Since $|R-S| \ge m$ error of *predicted* hypothesis would have an error rate of about 1/4 (in expectation)
- Need to constrain the hypothesis class $\ensuremath{\mathcal{H}}$

Finite Hypothesis Classes

• Assume that $\mathcal H$ has finite number of hypotheses

- $\mathcal{X} = \{-1, 1\}^n$, $Y = \{0, +1\}$, and \mathcal{H} is all truth tables
- Linear thresholds of the form sign($\mathbf{w} \cdot \mathbf{x}$) with $w_j = \frac{i}{i}$, $i, j \in [k]$
- All Python functions that take at most *b*₁ bytes and with memory of *b*₂ bytes (very large but finite) with inputs over {0, 1}³²
- Distinguish between the following cases:
 - Realizable: $h^* \in \mathcal{H}$ such that for all (\mathbf{x}, y) , $h^*(\mathbf{x}) = y$
 - Agnostic: not realizable, but either $\mathcal{D}(+1|\mathbf{x}) = 1$ or $D(-1|\mathbf{x}) = 1$
 - Stochastic: not agnostic, $0 < D(+1|\mathbf{x}) < 1$ for "many" \mathbf{x}

Empirical Risk Minimization

- Input: training set $S = \{(x^i, y^i)\}_{i=1}^m$
- Realizable case:
 - Output: $h \in \mathcal{H}$ s.t. $\forall i, y^i = h(x^i)$
- Unrealizable case:
 - Empirical risk:

$$\mathcal{L}_{\mathcal{S}}(h) = \frac{1}{m} \left| \left\{ i : h(x^{i}) \neq y^{i} \right\} \right|$$

• Output:

$$h = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{S}}(h)$$

- Can use same ERM procedure
- $\mathcal{L}_{\mathcal{S}}(h) = 0$ in realizable case
- Why distinguish between the two settings?

ERM in Realizable Settings

View ERM as a function that takes \mathcal{H} and S as inputs and returns $h \in \mathcal{H}$ such that $\mathcal{L}_{S}(h) = 0$

Theorem (Relizable PAC)

Fix ε , δ and assume realizability. If the number of examples

$$m \geq rac{\log(|\mathcal{H}|) + \log(1/\delta)}{arepsilon}$$

then for every D, with probability of at least $1 - \delta$ (over the choice of S of size m),

 $\mathcal{L}_{\mathcal{D}}(\mathit{ERM}(S,\mathcal{H})) \leq \varepsilon$.

Proof

- Let $\mathcal{L}_{\mathcal{D}}(h)$ be the loss of h on (unknown) \mathcal{D}
- Note that S is a random set determined by ${\cal D}$
- We need to prove that the probability mass of S for which ERM returns inaccurate hypothesis is at most δ

 $\mathcal{D}(\{S:\mathcal{L}_{\mathcal{D}}(\mathsf{ERM}(S,\mathcal{H})) > \varepsilon\}) \leq \delta$

• Let \mathcal{H}_B be the set of "inaccurate" hypotheses,

 $\mathcal{H}_B = \{h \in \mathcal{H} : \mathcal{L}_D(h) > \varepsilon\}$

• Let *M* be the set of "ill-guiding" samples (set of sets),

$$M = \{S : \exists h \in \mathcal{H}_B, \mathcal{L}_S(h) = 0\}$$
$$= \bigcup_{h \in \mathcal{H}_B} \{S : \mathcal{L}_S(h) = 0\}$$

First, note that

$$\{S: \mathcal{L}_{\mathcal{D}}(\mathsf{ERM}(S, \mathcal{H})) > \varepsilon\} \subseteq M = \bigcup_{h \in \mathcal{H}_{B}} \{S: \mathcal{L}_{S}(h) = 0\}$$

Proof (Cont.)

Next we use the Union Bound: for $\forall A, B$ distribution \mathcal{D}

 $\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B)$

Proof (Cont.)

Next we use the Union Bound: for $\forall A, B$ distribution \mathcal{D}

$$\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B)$$

Therefore, using the union bound

$$\mathcal{D}(\{S : \mathcal{L}_{\mathcal{D}}(\mathsf{ERM}(S, \mathcal{H})) > \varepsilon\})$$

$$\leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}(\{S : \mathcal{L}_{S}(h) = 0\})$$

$$\leq |\mathcal{H}_{B}| \max_{h \in \mathcal{H}_{B}} \mathcal{D}(\{S : \mathcal{L}_{S}(h) = 0\})$$

Proof (Cont.)

- Next, we use, $\mathcal{D}({S : \mathcal{L}_S(h) = 0}) = (1 \mathcal{L}_{\mathcal{D}}(h))^m$
- If $h \in \mathcal{H}_B$ then $\mathcal{L}_D(h) > \varepsilon$ and therefore

$$\mathcal{D}(\{S: \mathcal{L}_S(h)=0\}) < (1-\varepsilon)^m$$

We showed that,

$$\mathcal{D}(\{S : \mathcal{L}_{\mathcal{D}}(\mathsf{ERM}(S, \mathcal{H}) > \varepsilon\}) < |\mathcal{H}_{B}|(1 - \varepsilon)^{m}$$

• Finally, using $1 - \varepsilon \leq e^{-\varepsilon}$ and $|\mathcal{H}_B| \leq |\mathcal{H}|$ we get,

 $\mathcal{D}(\{S : \mathcal{L}_{\mathcal{D}}(\mathsf{ERM}(S, \mathcal{H}) > \varepsilon\}) < |\mathcal{H}| e^{-\varepsilon m}$

• The right-hand side would be $\leq \delta$ if $m \geq \frac{\log(|\mathcal{H}|/\delta)}{\epsilon}$

Hypothesis class \mathcal{H} is PAC learnable using algorithm \mathcal{A} if for all $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$, any distribution \mathcal{D} over \mathcal{X} , then $\mathcal{L}_{\mathcal{D}}(h) \leq \varepsilon$ with probability $1 - \delta$ where $h = \mathcal{A}(S, \mathcal{H})$.

Hypothesis class \mathcal{H} is PAC learnable using algorithm \mathcal{A} if for all $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$, any distribution \mathcal{D} over \mathcal{X} , then $\mathcal{L}_{\mathcal{D}}(h) \leq \varepsilon$ with probability $1 - \delta$ where $h = \mathcal{A}(S, \mathcal{H})$.

 $m_{\mathcal{H}}$ is termed the sample complexity of learning \mathcal{H}

Agnostic PAC Learning

- So far, assumed labels are generated by $h^\star \in \mathcal{H}$
- Assumption is often unrealistic
- Instead of ${\mathcal D}$ over ${\mathcal X}$ let ${\mathcal D}$ be a distribution over ${\mathcal X}\times {\mathcal Y}$
- Replace $\exists h^*$ with conditional distribution $\mathcal{D}(y|\mathbf{x})$
- Define risk as:

$$\mathcal{L}_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(\mathbf{x}, y) \sim \mathcal{D}}[h(\mathbf{x}) \neq y]$$

Relax notion of "approximately correct"

$$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) - \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) \leq \varepsilon$$

Realizable vs. Agnostic

	PAC	Agnostic PAC
Dist	${\mathcal D}$ over ${\mathcal X}$	${\mathcal D}$ over ${\mathcal X} imes {\mathcal Y}$
Truth	$h^{\star} \in \mathcal{H}$	not in class, may not exist
Risk	$L_{\mathcal{D}}(h) = \mathcal{D}(\{\mathbf{x} : h(\mathbf{x}) \neq h^{\star}(\mathbf{x})\})$	$L_{\mathcal{D}}(h) = \mathcal{D}(\{(\mathbf{x}, y) : h(\mathbf{x}) \neq y\})$
Input	$\{\mathbf{x}^i\}_i \sim \mathcal{D}^m$ $\forall i, \ y_i = h^*(\mathbf{x}_i)$	$\{(\mathbf{x}^i, y^i)\}_i \sim \mathcal{D}^m$
Goal	$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) \leq arepsilon$	$\mathcal{L}_{\mathcal{D}}(\mathcal{A}(S)) \leq \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) + \varepsilon$

Agnostic PAC

Require that for every $\varepsilon, \delta \in (0, 1)$, $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$, and distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$,

$$\mathcal{D}\left(\left\{S \in (\mathcal{X} \times \mathcal{Y})^m : \mathcal{L}_{\mathcal{D}}(A(S)) \leq \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) + \varepsilon\right\}\right) \geq 1 - \delta$$

Representative Sample

A training set S is called ε -representative if

$$orall h \in \mathcal{H}, \ |\mathcal{L}_{\mathcal{S}}(h) - \mathcal{L}_{\mathcal{D}}(h)| \leq arepsilon$$

Representative Sample

A training set S is called ε -representative if

$$\forall h \in \mathcal{H}, \ |\mathcal{L}_{\mathcal{S}}(h) - \mathcal{L}_{\mathcal{D}}(h)| \leq \varepsilon$$

Lemma Assume that a training set S is ε -representative. Then, the output of ERM_H(S),

 $\hat{h} \in \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \mathcal{L}_{\mathcal{S}}(h)$

satisfies

$$\mathcal{L}_{\mathcal{D}}(\hat{h}) \leq \min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) + 2\varepsilon$$

Representative Sample (Proof)

For every $h \in \mathcal{H}$,

$$\mathcal{L}_{\mathcal{D}}(\hat{h}) \leq \mathcal{L}_{\mathcal{S}}(\hat{h}) + \varepsilon$$

$$\leq \mathcal{L}_{\mathcal{S}}(h) + \varepsilon$$

$$\leq \mathcal{L}_{\mathcal{D}}(h) + \varepsilon + \varepsilon$$

$$=\mathcal{L}_{\mathcal{D}}(h)+\varepsilon$$

Assume ${\cal H}$ is finite. Then, ${\cal H}$ is agnostically PAC learnable using ERM with sample complexity

$$\left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\varepsilon^2} \right\rceil$$

Proof (cont.)

• We need to show

$$\mathcal{D}(\{S: \exists h \in \mathcal{H}, |\mathcal{L}_{S}(h) - \mathcal{L}_{\mathcal{D}}(h)| > \varepsilon\}) < \delta$$

Proof (cont.)

• We need to show

$$\mathcal{D}(\{S: \exists h \in \mathcal{H}, |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\}) < \delta$$

• Using the union bound,

$$\mathcal{D}(\{S : \exists h \in \mathcal{H}, |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\}) \\= \mathcal{D}(\cup_{h \in \mathcal{H}}\{S : |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\}) \\\leq \sum_{h \in \mathcal{H}} \mathcal{D}(\{S : |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\})$$

Hoeffding's inequality

Let z_1, \ldots, z_m be a sequence of i.i.d. $\sim B(\theta)$. Denote by $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} z_i$ their empirical average. Then, for any $\varepsilon > 0$

$$\mathbb{P}\left[\left|\hat{\theta} - \theta\right| > \varepsilon\right] \leq 2 e^{-2 m \varepsilon^2}$$

Hoeffding's inequality

Let
$$z_1, \ldots, z_m$$
 be a sequence of i.i.d. $\sim B(\theta)$. Denote by
 $\hat{\theta} = \frac{1}{m} \sum_{i=1}^{m} z_i$ their empirical average. Then, for any $\varepsilon > 0$

$$\mathbb{P}\left[\left|\hat{\theta} - \theta\right| > \varepsilon\right] \leq 2 e^{-2 m \varepsilon^2}$$

This implies:

$$\mathcal{D}(\{S: |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\}) \leq 2 \exp(-2m\varepsilon^{2})$$

•

Concluding

We showed

 $\mathcal{D}(\{S: \exists h \in \mathcal{H}, |\mathcal{L}_{\mathcal{S}}(h) - \mathcal{L}_{\mathcal{D}}(h)| > \varepsilon\}) \leq 2 |\mathcal{H}| e^{-2m\varepsilon^2}$

Concluding

We showed

$$\mathcal{D}(\{S: \exists h \in \mathcal{H}, |\mathcal{L}_{S}(h) - \mathcal{L}_{D}(h)| > \varepsilon\}) \leq 2 |\mathcal{H}| e^{-2m\varepsilon^{2}}$$

We want $2 \left| \mathcal{H} \right| e^{-2 \, m \, \varepsilon^2} \leq \delta$ and therefore,

$$m \geq \frac{\log(2|\mathcal{H}|/\delta)}{2\varepsilon^2}$$

Infinite Classes Made Finite

- \mathcal{H} is "parameterized" by *n* numbers
- Assume it's sufficient to use floating points
- Then $|\mathcal{H}| \leq 2^{32n}$,

$$m_{\mathcal{H}}(\varepsilon, \delta) \leq \left\lceil \frac{64n + 2\log(2/\delta)}{\varepsilon^2}
ight
ceil$$

- Sample complexity of $\tilde{O}\left(\frac{n}{\varepsilon^2}\right)$ is not too shabby
- However, ERM would take exponential time in the dimension
- In reasonably small ML applications $n \approx 10^5$...