COS324: Introduction to Machine Learning
Lecture 4: PAC Learning - Part Il
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Recap & Today

e Notion of batch learning

e |dentically, independently, distributed (i.i.d) samples from D
e Probably Approximately Correct learning

e PAC learnability with finite hypothesis classes

e Agnostic PAC learnability

e Agnostic learning of finite hypothesis classes

e Infinite hypothesis classes
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PAC Learning

e Accuracy, €, and confidence, §, parameters

e Training data, S, of m(g,d) = |S| i.i.d samples from an
unknown distribution D

e Find an hypothesis h s.t.

[:D(h) < €
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PAC Learning

e Accuracy, €, and confidence, §, parameters

e Training data, S, of m(g,d) = |S| i.i.d samples from an
unknown distribution D

e Find an hypothesis h s.t.
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PAC Learning

e Accuracy, €, and confidence, §, parameters

Training data, S, of m(e,d) = |S] i.i.d samples from an
unknown distribution D

Find an hypothesis h s.t.

Lp(h)< & wp. 1-96
~ v

Q.1 What candidate hypotheses for h to consider?

Q.2 How to asses Lp(h)
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Perils of Lack of (Prior) Knowledge

Suppose |X| is infinite

Pick an arbitrarily large m

R is a random set of examples of size 2m

Define D(x) = 5= if x € S and 0 o.w.

Set S to m random samples from R according to D
Number of unique instances in S is at most m

Suppose H consists of all functions from X to {—1,+1}
Any learning algorithm can only guess the labels of R — S

Since |R—S| > m error of predicted hypothesis would have an
error rate of about 1/4 (in expectation)

Need to constrain the hypothesis class ‘H
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Finite Hypothesis Classes

e Assume that H has finite number of hypotheses
o X ={-1,1}", Y = {0, +1}, and H is all truth tables

e Linear thresholds of the form sign(w - x) with w; = Ji i,J € [K]
e All Python functions that take at most b; bytes and with memory
of by bytes (very large but finite) with inputs over {0, 1}32
e Distinguish between the following cases:
e Realizable: h* € H such that for all (x,y), i*(x) =y
e Agnostic: not realizable, but either D(+1|x) =1 or D(—1]x) =1
e Stochastic: not agnostic, 0 < D(+1|x) < 1 for "many” x

N
w












Empirical Risk Minimization

e Input: training set S = {(x',y")}™,

Realizable case:
e Output: h € H s.t. Vi, y' = h(x")

Unrealizable case:
e Empirical risk:

1., . .
Ls(h) = - [{i:h(x") # y'}]
e Qutput:
h = arg hmggr{]ﬁg(h)

e Can use same ERM procedure

Ls(h) = 0 in realizable case

Why distinguish between the two settings?



ERM in Realizable Settings

View ERM as a function that takes H and S as inputs and
returns h € H such that Ls(h) =0

Theorem (Relizable PAC)
Fix €,0 and assume realizability. If the number of examples

m> log(|#]) +log(1/6)
13

then for every D, with probability of at least 1 — 6 (over the
choice of S of size m),

Lp(ERM(S,H)) <e .

N
w



Proof
e Let Lp(h) be the loss of h on (unknown) D
e Note that S is a random set determined by D
e We need to prove that the probability mass of S for which ERM
returns inaccurate hypothesis is at most
DS : Lp(ERM(S,H)) >€}) <o

e Let Hp be the set of “inaccurate” hypotheses,

Hg ={heH:Lp(h) >¢e}
e Let M be the set of “ill-guiding” samples (set of sets),

M =A{S :3h e Hg, Ls(h) =0}
= |J {s:Ls(h) =0}
heHp

e First, note that

{S:Lp(ERM(S, 1)) > e} CM= [ {S:Ls(h)=0}
heHp



Proof (Cont.)

Next we use the Union Bound: for VA, B distribution D

D(AUB) <D(A)+ D(B)
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Proof (Cont.)

Next we use the Union Bound: for VA, B distribution D
D(AUB) <D(A)+ D(B)
Therefore, using the union bound

DS :Lp(ERM(S,H)) > €})
< Y DUS: Ls(h) = 0})

heHp
Hal max D({S : Ls(h) =0})

IN
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Proof (Cont.)

Next, we use, D({S: Ls(h) =0}) = (1— Lp(h))™

If h € Hpg then Lp(h) > € and therefore

D({S: Ls(h)=0}) < (1—-¢)"

We showed that,

D({S : Lp(ERM(S,H) > €}) < |Hg|(1—¢)"

Finally, using 1 —e < e € and |Hg| < |H| we get,
D{S : Lp(ERM(S, H) > €}) < |[H|e *"

The right-hand side would be < § if m > '09(#1/8)
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PAC Learnability

Hypothesis class H is PAC learnable using algorithm A if for all
m > my(g,0), any distribution D over X, then Lp(h) < € with
probability 1 — § where h = A(S, H).



PAC Learnability

Hypothesis class H is PAC learnable using algorithm A if for all
m > my(g,0), any distribution D over X, then Lp(h) < € with
probability 1 — § where h = A(S, H).

my is termed the sample complexity of learning H



Agnostic PAC Learning

So far, assumed labels are generated by h* € H

Assumption is often unrealistic

Instead of D over X let D be a distribution over X x Y

Replace 3h* with conditional distribution D(y|x)

Define risk as:

def

['D(h) = IED(x,y)ND[h(X) 7éy]

Relax notion of “approximately correct”

Lp(A(S)) —minLp(h) < e
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Realizable vs. Agnostic

’ \ PAC \ Agnostic PAC
Dist D over X Dover X x Y
Truth h*eH not in class, may not exist
Risk Lp(h) = Lp(h) =

D({x: h(x) # h*(x)}) D({(x.y) : h(x) # y})

Input {x'}; ~ D" {(x',y")}i ~ D™
Vi, yi = h*(x;)

Goal Lp(A(S)) <e Lp(A(S)) < minpey Lp(h) + €




Agnostic PAC

Require that for every €,6 € (0,1), m > my(e,6), and
distribution D over X x Y,

p({se@xm: cotas) <pip ot +e}) = 1-0
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Representative Sample

A training set S is called e-representative if

VheH, |Ls(h)—Lp(h)| <e



Representative Sample

A training set S is called e-representative if

VheH, |Ls(h)—Lp(h)| <e

Lemma Assume that a training set S is e-representative. Then,
the output of ERMy(S),
h € argmin Ls(h)
heH

satisfies
Lp(h) < minLp(h) + 2¢ .
heH



Representative Sample (Proof)

For every h € H,

Lp(h) < Ls(h) +¢
< Ls(h)+e
<Lph)+e+e¢

= ﬁp(h) +e
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Agnostic PAC for Finite Classes

Assume H is finite. Then, H is agnostically PAC learnable using
ERM with sample complexity

[2 Iog(2|7-[|/6)-‘

2
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Proof (cont.)

e \We need to show

D({S:3FheH, |Ls(h)— Lp(h)| >¢€}) <o

N
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Proof (cont.)

e \We need to show

D({S:3FheH, |Ls(h)— Lp(h)| >¢€}) <o

e Using the union bound,
D{S:3heH, |Ls(h)— Lp(h)| > €})
= D(Unen{S : [Ls(h) — Lp(h)| > €})
<> D{S:|Ls(h) — Lp(h)| > €})

heH
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Hoeffding's inequality

Let z1, ..., Zm be a sequence of i.i.d. ~ B(#). Denote by
6 = % Zz,- their empirical average. Then, for any € > 0
i=1

2

IP’H@A—G‘ >5] < De2me



Hoeffding's inequality

Let z1, ..., Zm be a sequence of i.i.d. ~ B(#). Denote by

6 = % Zz,- their empirical average. Then, for any € > 0
i=1
2

IP’H@A—G‘ >5] < De2me

This implies:

D({S : |Ls(h) — Lp(h)| > €}) < 2exp(—2 mez) .
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Concluding

We showed

DS :Ihe M, |Ls(h) — Lp(h)| > €}) < 2|H|e2m
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Concluding

We showed

DS :Ihe M, |Ls(h) — Lp(h)| > €}) < 2|H|e2m

We want 2|#| e"2m€" < § and therefore,

log(2[41/3)
mE T e
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Infinite Classes Made Finite

e H is “parameterized” by n numbers

Assume it's sufficient to use floating points
Then |H| < 232,

(e, 5) < {64n+ 2|og(2/6)—‘

2

Sample complexity of O (%) is not too shabby

g2

However, ERM would take exponential time in the dimension

In reasonably small ML applications n ~ 10° ...
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