COS324: Introduction to Machine Learning

Lecture 3: online learning part |l

Prof. Elad Hazan & Prof. Yoram Singer



Recap + today

e |ast lecture:

1. online decision making
2. our first (serious) learning algorithm: weighted majority

e today: the power of randomness in learning

1. randomization in decision making
2. the Kelly criterion
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Reminder: online learning

e Initializew! ; £ =0
e Fort=12,...,7,...
1. Predict p¢ using wt
2. Observe true outcome yt
3. Endure loss: £t = £(yt, pt); Lt =Lt + ¢t

4. Update wi™! := F(wt, xt, yt)



Reminder: Weighted Majority Algorithm

e Initializew? =1; £ =0

e Fort=1,2,..., T, ...
1. Observe predictions xt € {—1, +1}"
2. Predict y* := sign(w? - x!)
3. Observe true outcome yt

4. Endure loss: £t = 1]yt # pt] ; LPF = LE+ 4t

th Xft = yt
t+1
ij -

(L—mw) X #y*

5. Update:



Bag Of Words (BOW) model

e Pre-defined dictionary of n tokens (words, html, arch-codes)

kale
plate
kohlrabi
ate
fork

Ol H|WIN|

e Represent a document as a vector x € {—1,+1}" s.t. xj = +1
iff token j appears in document

e Tokens not in the dictionary are ignored
e Examples:
"The kohlrabi ate kale on a plate” — (+1,+1,+1,+1, —1)

"A monkey ate a banana with a fork” — (-1,—1, -1, +1, +1)



BOW + WM = Text Classifier

Each dictionary word is an expert

Initialize weight of experts w! =1

Fort=1,...,m: // mis #document

o Convert document t to a vector x* € {—1,+1}"
e Update weights using WM with provided tagging y®: w? ~» witl

m+1

Output w

Wait, but what if A single accurate expert ?
Do we obtain a good classifier? Yes!



(Future) Refinement

e In many applications the vocabulary size n is much larger than
length of each individual document

e Therefore x' consists mostly of —1's and few +1's

e Most of the contribution to the weighted majority is due to
words that do not appear in the document

e We can represent a document as a vector in {0, 1}"
e |f word j appears in document then x; =1 ow. x; =0

e Algorithmic advantage — represent x as a list of indices
e However, w - x > 0 since all weights and inputs are non-negative

e Introduce an bias term (indexed 0) which is always —1:
x— (—1,x)

To be continued...
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Reminder: guarantee

,C,-T number of mistakes made by expert / during t =1,..., T
LT number of mistakes WM made during during t =1, ..., T

Theorem: For every sequence (x!, y1),.. ., (x”,yT) the number

of mistakes of WM is at most,

21
Vieln : L7 < 2004+n)L] + 2log(n)

Theorem 2: any deterministic decision making algorithm has

LT > 2min2L£]

But can we still do better??



Randomized Weighted Majority

e Little and Warmuth derived randomized version of WM (RWM)

e RWM replaces the deterministic weighted majority rule with a
randomized prediction:

1. Define a distribution over experts

t
t

p. = —

: Zf:l wf

2. Pick an expert it at random according to pt

e How is this random choice implemented on a computer?



Randomized Weighted Majority

e Initializew! =1; £ =0

e Fort=1,2,...,T,...

1. Observe predictions x* € {—1,+1}"

Wt

2. Form distribution pf = ——

n
t
oW
Jj=1

3. Pick an index e with probability pf and predict y* :
4. Observe true outcome yt
5. Endure loss: €8 = 1[yt # 9t] ; L =Lt 4+ ¢¢
6. Update:
wf g =y
Wit =

t
Xe
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Randomized Weighted Majority

e The expected number of mistakes of RWM is bounded above,

E[LT] < (1+ )Ll + 'Ogn(”)

e This bound is tight — any randomized prediction algorithm in the
experts setting makes at least,

1+n)ch + log(n)

mistakes for some 1 € (0, 3)
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Proof

e Let /* be the best expert in hindsight (the one who made the
least number of mistakes)

Let df = ZW

Notice that LT Z m

Expected number of mlstakes by RWM at time t is

n
t t __ t .t
pt-mt=> pim
=1

T

and overall expected #mistakes from 1 thru T is Zpt -mt
t=1

Let m,-t be 1 if expert i made a mistake on round t and 0 o.w.
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Observation |

= w2 x (1—mn)~"

= (L—n)~



Observation I

T < PO T P’

Proof outline:
e Expand ¢t+!

n
oIt = Z wit Z wi(1 —nm?)
i=1

e Since p! = q>f ;= wh = dipk

(Dt-‘rl (Dt_nz(bt — (1_nptmt)

e Usel—a<e™®
el < pte—mpimt

e Use induction on t to get observation
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Proof (cont.)

e Combining both observations:

(1- )" <o < @l eI

Taking the logarithm:

—nE[LT] +log(n) > L] log(1 —n)

From the Taylor approximation, for n < %

—n—n*<log(l—n) < -n

Plugging that back in:

—nE[LT] +log(n) > L.(-n —n?)

Shifting sides and multiplying by l

E[cT] < 2R Iog( ) | (1+n)Clk



Randomized Weighted Majority

e The expected number of mistakes of RWM is bounded above:

E[LT] < (1+n)L] +

log(n)
n

e How good is this bound?
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Kelly criterion
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Kelly criterion

e Horse race - how to bet on a favorable horse?
(prior information tilt the odds in your favor)

Two possible outcomes, both happen w.p. 2:

5
e |Loose everything
e Make 3x on your bet
e Bet of $1. Outcome after race:
1
reward =
$3, w.p. 3

Given $100, how much would you bet?



Kelly criterion

e Repeated investing: wealth increases by factor of b with
probability p such that pb > 1

e Given that we have 100 rounds of investing, what fraction of

wealth to iteratively invest?
t

e ut = wealth at timet ; pf = u‘t‘,l
e f €0, 1] fraction of wealth to bet on

e Expectation (one round):

Elp'] = (1—=p) (1 —=1F)+p[(1—F)+rb]
= 1+f(ph—1)>1

e Maximized at f = 1, why?
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Kelly criterion

e After 100 rounds of investing...
e Expectation:

.
E[u'%] = ' E[] ] o]
t=1
100

=put H E[p'] independence
t=1
W1+ F(bp — 1)

e S0, how much would you bet?
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Kelly criterion - simulation
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Kelly criterion - simulation
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Kelly criterion

The Kelly Criterion — Maximize

Eflog(p")]
e Results in:
- b—1

Theorem: betting f* results in more wealth than any other
fractional-betting method with probability one, as number of
rounds +— oo !

To be continued later in the course...



Summary

The power of randomization in learning

Randomized weighted majority

Use in text classification

Expectation vs. high probability, Kelly criterion

Next week: statistical and computational learning theory.



