
COS324: Introduction to Machine Learning
Lecture 2: Online learning

Prof. Elad Hazan & Prof. Yoram Singer
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Learning from experts’ advice

• Previous lecture introduced setting called online learning

• Numerous applications in temporal prediction problems

• Target need not be binary ({−1,+1}), e.g. y t ∈ Rd
• Weather (temperature, precipitation, wind, ...)
• Seismic activities
• Financial markets
• Reactive systems (drones, self-driving cars, ...)
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Online learning

• Initialize w1 ; L1 = 0

• For t = 1, 2, . . . , T, . . .

1. Predict ŷ t

2. Observe true outcome y t

3. Endure loss: `t = `(y t , ŷ t) ; Lt+1 = Lt + `t

4. Update wt+1 := F (wt , xt , y t)

• Classification loss `(y , y ′) = 1 if y 6= y ′ and 0 o.w.

• When none of the experts is always consistent
• Consistent will get out-of-bound
• Halving will end with a zero vector (∃T s.t. ∀t ≥ T wt = 0)
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Online learning: what can be said in general?

• With consistent expert ⇒ can achieve low # of errors

• Analoguous statement for experts which make errors?
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Weighted Majority

• Classification learning, 0− 1 loss

• Assign real-valued weight to experts w tj ∈ [0, 1]

• Rather than eliminating erronous experts demote them
x tj 6= y t ⇒ w t+1j < w tj

• Replace simple majority rule with weighted majority

• Pro: no expert left behind...

• Con: need to introduce demotion parameter 0 < η � 1

WM algorithm by Littlestone and Warmuth, 1989
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Weighted Majority Algorithm

• Initialize w1 = 1 ; L1 = 0

• For t = 1, 2, . . . , T, . . .

1. Observe predictions xt ∈ {−1,+1}n

2. Predict ŷ t := sign(wt · xt)

3. Observe true outcome y t

4. Endure loss: `t = 1 [y t 6= ŷ t ] ; Lt+1 = Lt + `t

5. Update:

w t+1j =


w tj x tj = y t

(1− η)w tj x tj 6= y t
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Intuitive explanation

• Suppose there exists an accurate expert (AE) albeit not perfect

• Four possible cases on round t:

1. AE correct & WM incorrect
total mass of erroneous experts decreases by 1− η
AE stayed the same and improved it relative standing

2. AE correct & WM correct
some mass of erroneous experts decreases by 1− η
AE stayed the same and may improved a little

3. AE incorrect & WM correct
does not happen quite often & WM is still fine

4. AE & WM predicted incorrectly
AE is in the same boat with other accurate experts
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Analysis: bounding the number of mistakes

LTi number of mistakes made by expert i during t = 1, ..., T

LT number of mistakes WM made during during t = 1, ..., T

Theorem: For every sequence (x1, y1), . . . , (xT , yT ) the number

of mistakes of WM is at most,

∀i ∈ [n] : LT ≤ 2(1 + η)LTi +
2 log(n)

η

Bound holds for all i in particular for the best during t = 1, . . . , T

Multiplicative factor 2(1 + η) ; Additive factor O(log(n))
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Analysis: bounding the number of mistakes

• Let i∗ be the best expert in hindsight – the one who made the
least number of mistakes in retrospect

• Let Φt =

n∑
i=1

w ti denote the total mass at round t

Clearly, Φt ≥ Φt+1 ≥ Φt+2 . . .

• Use shorthand m def
= LT , m? def

= LTi?
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Observation I

ΦT =

n∑
i=1

wT
i

≥ wT
i∗

= w 1
i∗ (1− η)m

?

= (1− η)m
?
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Observation II

We prove that ΦT ≤ Φ1 (1− η/2)m

• WM predicted correctly on iteration t: Φt+1 ≤ Φt

• WM predicted incorrectly on iteration t:

Φt+1 =
∑
i :x ti 6=y t

w t+1i +
∑
i :x ti =y

t

w t+1i

=
∑
i :x ti 6=y t

(1− η)w ti +
∑
i :x ti =y

t

w ti

• Define σe =
∑
i :x ti 6=y t

w ti σc =
∑
i :x ti =y

t

w ti and rewrite

Φt+1 = (1− η)σe + σc = (1− η)Φt + ησc

• Last, when WM predicts incorrectly
∑
i :x ti =y

t

wi ≤
1

2
Φt
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Analysis (cont.)

• We therefore get

Φt+1 ≤ (1− η)Φt + η
1

2
Φt = (1− η/2)Φt

• Unraveling the recursion for each round WM was mistaken

Φt+1 ≤ Φ1(1− η/2)m = n(1− η/2)m

• Combining the observations we get

(1− η)m
? ≤ ΦT ≤ n(1− η/2)m

• Taking the logarithm of both sides,

m? log(1− η) ≤ m log(1− η/2) + log(n)
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Analysis – Refinment
• We use Taylor approximation for a < 1

2 :

−a − a2 ≤ log(1− a) ≤ −a

and bound

−η − η2 ≤ log(1− η) log(1− η/2) ≤ −η/2

• Using the lower and upper bounds:

m?
(
−η − η2

)
≤ m

(
−
η

2

)
+ log(n)

• Diving by η/2 and rearranging:

m ≤
2 log(n)

η
+ 2(1 + η)m?

which means

LT ≤ 2(1 + η)LTi +
2 log(n)

η
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Comments on Weighted Majority

• The algorithm is deterministic and its running time linear

• Optimal choice of η (requires to knowledge of m?) gives:

LT ≤ 2LTi∗ + 4

√
LTi∗ log(n) + 2 log(n)

• It is possible to adaptively change η for each round and get:

LT ≤ 2LTi∗ + 8

√
LTi∗ log(n) + 4 log(n)

• Is possible to achieve lower error?
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Comments on Weighted Majority

• Theorem [Littlestone-Warmuth]: any deterministic algorithm is
bound to make at least 2LTi∗ mistakes

• Prove?

• Can we do better using a non-deterministic algorithm?
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Bag Of Words (BOW) model
• Pre-defined dictionary of n tokens (words, html, arch-codes)

kale 1
plate 2

kohlrabi 3
ate 4
fork 5

• Represent a document as a vector x ∈ {−1,+1}n s.t. xj = +1

iff token j appears in document

• Tokens not in the dictionary are ignored

• Examples:

”The kohlrabi ate kale on a plate” 7→ (+1,+1,+1,+1,−1)

”A monkey ate a banana with a fork” 7→ (−1,−1,−1,+1,+1)
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BOW + WM ⇒ Text Classifier

• Each dictionary word is an expert

• Initialize weight of experts w1 = 1

• For t = 1, . . . , m: // m is #document
• Convert document t to a vector xt ∈ {−1,+1}n
• Update weights using WM with provided tagging y t : wt  wt+1

• Output wm+1

Wait, but what if 6 ∃ single accurate expert ?
Do we obtain a good classifier? Yes!
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