COS324: Introduction to Machine Learning

Lecture 2: Online learning

Prof. Elad Hazan & Prof. Yoram Singer
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Learning from experts’ advice

e Previous lecture introduced setting called online learning

e Numerous applications in temporal prediction problems

e Target need not be binary ({—1,+1}), e.g. yf € R?
Weather (temperature, precipitation, wind, ...)
Seismic activities

Financial markets

Reactive systems (drones, self-driving cars, ...)

N



Online learning
e Initializew! ; £ =0
e Fort=12,....7,...
1. Predict 9t
2. Observe true outcome yt
3. Endure loss: £t = £(yt, 9t); Lt =Lt + ¢t

4. Update wi™! := F(wt, xt, yt)

e Classification loss £(y,y") =1 if y # y' and 0 o.w.

e \When none of the experts is always consistent

e Consistent will get out-of-bound
e Halving will end with a zero vector (3T s.t. Vi > T wf =0)



Online learning: what can be said in general?

e With consistent expert = can achieve low # of errors

e Analoguous statement for experts which make errors?



Weighted Majority

Classification learning, 0 — 1 loss

Assign real-valued weight to experts w/ € [0, 1]

Rather than eliminating erronous experts demote them
th;éyt . th+1 < th

Replace simple majority rule with weighted majority

Pro: no expert left behind...

Con: need to introduce demotion parameter 0 < n < 1

WM algorithm by Littlestone and Warmuth, 1989



Weighted Majority Algorithm

e Initializew! =1; £} =0
e Fort=12,...,7,...
1. Observe predictions x* € {—1,+1}"
2. Predict yt := sign(w? - x*)
3. Observe true outcome yt
4. Endure loss: €8 = 1[yt # 9t ; LPFL = Lt + 4t

5. Update:



Intuitive explanation
e Suppose there exists an accurate expert (AE) albeit not perfect

e Four possible cases on round t:

1. AE correct & WM incorrect
total mass of erroneous experts decreases by 1 — 7
AE stayed the same and improved it relative standing

2. AE correct & WM correct
some mass of erroneous experts decreases by 1 —n
AE stayed the same and may improved a little

3. AE incorrect & WM correct
does not happen quite often & WM is still fine

4. AE & WM predicted incorrectly
AE is in the same boat with other accurate experts



Analysis: bounding the number of mistakes

E,-T number of mistakes made by expert / during t=1,..., T

LT number of mistakes WM made during during t =1,..., T

Theorem: For every sequence (x!,y1), ..., (x", yT) the number

of mistakes of WM is at most,

Vieln: £7 < 201+nLl + 2log(n)

Bound holds for all / in particular for the best during t =1
Multiplicative factor 2(1+m) ; Additive factor O(log(n))



Analysis: bounding the number of mistakes

e Let /* be the best expert in hindsight — the one who made the
least number of mistakes in retrospect

n
o Let df = Z w! denote the total mass at round t
i1
Clearly, ®f > ¢+l > pt+2

e Use shorthand m& 27, m* & [,,-T*
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Observation |

'V
2
™
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Observation [l
We prove that &7 < ® (1 —n/2)"

WM predicted correctly on iteration t: Il < ¢t
WM predicted incorrectly on iteration t:

Gttl — Z witl 4 Z witl

ixtyt iixt=yt
_ t t
= E (1-—mw; + E w;
iixt#yt ixt=yt

Define ge = g wh oc= g w! and rewrite

iyt ot
ix[ £yt ixf=yt

Ot = (1 —n)oe + oc = (1 — n)d' + noc

L 1
Last, when WM predicts incorrectly Z w; < ECDt

ity t
ixf=y
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Analysis (cont.)

e \We therefore get
P < (1—m)ot + n%dﬁ = (1—-n/2)0!
e Unraveling the recursion for each round WM was mistaken
O < @Y1 —n/2)" = n(1—n/2)"
e Combining the observations we get
(1-m)™ <&T <n(1-n/2)"
e Taking the logarithm of both sides,

m*log(1 —n) < mlog(1 —n/2) + log(n)



Analysis — Refinment

e \We use Taylor approximation for a < %:
—a—a’<log(l—a)< —a
and bound
—n—n*><log(l—n) log(1l—n/2) < -n/2
e Using the lower and upper bounds:
o (on =) < m (=2 +log(n)
e Diving by 1/2 and rearranging:

m< 2log(n)

+2(1+n)m*

which means

L’ < 2(1+n)LT+M



Comments on Weighted Majority

The algorithm is deterministic and its running time linear

Optimal choice of 1 (requires to knowledge of m*) gives:

£h <2c] +44/LT log(n) + 2log(n)

It is possible to adaptively change 1 for each round and get:

£h <ol +8y/L] log(n) + 4log(n)

Is possible to achieve lower error?
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Comments on Weighted Majority

e Theorem [Littlestone-Warmuth]: any deterministic algorithm is
bound to make at least 2£,7; mistakes

e Prove?

e Can we do better using a non-deterministic algorithm?
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Bag Of Words (BOW) model

e Pre-defined dictionary of n tokens (words, html, arch-codes)

kale
plate
kohlrabi
ate
fork

Ol H|WIN|

e Represent a document as a vector x € {—1,+1}" s.t. xj = +1
iff token j appears in document

e Tokens not in the dictionary are ignored
e Examples:
"The kohlrabi ate kale on a plate” — (+1,+1,+1,+1, —1)

"A monkey ate a banana with a fork” — (-1,—1, -1, +1, +1)
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BOW + WM = Text Classifier

Each dictionary word is an expert

Initialize weight of experts w! =1

Fort=1,...,m: // mis #document

o Convert document t to a vector x* € {—1,+1}"
e Update weights using WM with provided tagging y®: w? ~» witl

m+1

Output w

Wait, but what if A single accurate expert ?
Do we obtain a good classifier? Yes!



