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Unsupervised Learning

• So far discussed supervised learning:
• Examples (x, y) are input-target pairs in X × Y
• Learning amounts to learning a mapping h : X → Y
• Loss measures discrepancy between y and ŷ = h(x), `(y , ŷ)

• Sometimes we have plentiful of instances xi

S =
{

(xi , ?)
}m
i=1
∪
{

(xi , yi)
}n
i=1

... but only handful of labels m � n

... or none at all n = 0

• It is nonetheless useful to find “structure” or meaningful
patterns in the data
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fMRI Data
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Goals of Clustering

• Intuitively, grouping a set of objects (instances) such that
• similar instances end up in the same cluster
• dissimilar instances into different groups

• Imprecise & potentially ambiguous definition

• Disappointingly, not at all simple to define rigorously
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Sources of Difficulty

• Inherit problem: lack of “ground truth” and tangible objective

• Technical difficulty:

• Similarity & distance functions are not transitive

‖u− v‖ ≤ ε ∧ ‖v −w‖ ≤ ε 6⇒ ‖u−w‖ ≤ ε

• Cluster membership is transitive

• Define u ∼ v iff u and v belong to the same cluster

• Then, u ∼ v ∧ v ∼ w ⇒ u ∼ w
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Clustering is Ambigious

similar objects in same cluster dissimilar objects are separated
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Lack of Ground Truth

Partition points into two clusters:

We have two well justifiable solutions:
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Model

• Input: set of elements S =
{
xi
}m
i=1

where xi ∈ X ⊂ Rd

• Distance d : X × X → R+ or similarity s : X × X → R
where s might not be symmetric, s(u, v) 6= s(v,u)

• Output: partition C =
{
Ci
}k
i=1

of training set S such that

S =

k⋃
i=1

Ci Ci ∩ Cj = ∅

• Target number of clusters k may be part of input or unkown
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Cost-based Clustering

• Focus on distance-based d(u, v) clustering

• NP-hard problems, methods are prone to local minima

• Cost of partitioning C =
{
Ci
}k
i=1

of S ?

• Define indicator

1[i , j |C] =

{
+1 ∃r : xi ∈ Cr ∧ xj ∈ Cr
−1 o.w.

• Penalize for large intra-cluster & small inter-cluster distances

`(S, C) =

|S|∑
i ,j=1

1[i , j |C] d(xi , xj)

• Number of instances to compare O
(
n2
)

|Ci | ≈
n

k
⇒

(
k
2

)(
n
k

)2 ≡ O(n2) inter-cluster pairs

k
( n
k
2

)
≡ O

(
n2

k

)
intra-cluster pairs
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k-Center Clustering

• Centroid-based clustering: intuitive, transitive, “aesthetic”

• Associate a center wj ∈ Rd with partition Cj

xi ∈ Cj ⇔ ∀l 6= j : d(xi ,wj) < d(xi ,wl)

• Induces partition

Cj =
{
i : ∀l 6= j d(xi ,wj) < d(xi ,wl)

}
• Loss of k-centers

`(S, C) =

k∑
j=1

∑
i∈Cj

d(xi ,wj) =

m∑
i=1

k

min
j=1
d(xi ,wj)
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Example of 3-Center Clustering
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Skeleton of Metric Clustering

• Intialize each w0j to a vector in Rd

• For t = 1, . . . , T

• Associate each xi with its nearest centroid

∀i : at(i) = arg
k

min
j=1
d(xi ,w

t−1
j )

• Restimate centroids from associations

∀j : wt
j = min

w

∑
i :at(i)=j

d(xi ,w)

• If ∀i : at(i) = at−1(i) break
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Convergence of Metric-based Clustering

• Centers at iteration t

Wt =
{
wtj
}k
j=1

• Partition at iteration t

At =
{
at(i)

}m
i=1

• Loss of partition and centers

`(S,A,W) =
1

m

m∑
i=1

d(xi ,wa(i))

• Then, `
(
S,At−1,Wt−1) > `(S,At,Wt−1) > `(S,At,Wt

)
• Since `(S,A,W) ≥ 0 and ∀t, j : wtj ∈ S̄

⇒ `
(
S,At,Wt

)
converges to a local minimum
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k-Means

• Use d(u, v)
def
= ‖u− v‖22

• Solving min
w

∑
i :a(i)=j

‖xi −w‖2 amounts to

wj =
1

nj

∑
i :a(i)=j

xi where nj
def
=
∣∣{i : a(i) = j}

∣∣
• Namely, center of mass of examples in cluster

• Runtime is: T k n
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k-Medians

• Use d(u, v)
def
= ‖u− v‖1

• Solving min
w

∑
i :a(i)=j

‖xi −w‖1 amounts to

wj [r ] = min
ω

∑
i :a(i)=j

∣∣xi [r ]− ω∣∣
= median

{
xi [r ] : a(i) = j

}
• wj [r ] is median of r ’th coordinate of examples in cluster

• Runtime is: T k n
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Tricks & Treats

• Initialization:
• At random
• Agglomeratively: warm-start from k − 1 clusters
• Agglomeratively: hierarchical from 2× k2 clusters
• Using other clustering methods (e.g. spectral)

• Art of choosing number of clusters k ...

• Small amounts of labeled data:
• Determine number of clusters
• Good initialization
• Metric adjustment prior to clustering
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Data Generated by k Gaussians
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Clustering with k̂ = 3
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Why are the decision boundaries straight?
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Clustering with k̂ = 4
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Clustering with k̂ = 5
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Original Means of Clusters
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