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Single Neuron

e A neuron is a function of the form x — o(w - x)
e Activation function o : R — R
e For instance, the sigmoid function
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Neural Network

e Obtained by connecting several neurons together

e Focus on feed-forward networks

e Directed (acyclic) graph G = (V, E) and denoting n = |V/|
e Input nodes: nodes w/o incoming edges vy, ..., Vg

e Output nodes: nodes w/o outgoing edges vp_jy1, ..., Vin
e Weights associated with each edgew: £E — R

e Computation defined by NN

olvl]=o0 ( Z wu — V] o[u]>

u—veE

where for (input) node j € [d] we define o[v;] = X;
e Feedfoward NN defines a function h: RY — R/



Multilayer Neural Networks (MLP)

e Layers V = {V;}/_; with edges between adjacent layers
e Example: input d =5, depth r =3, size 5+6+1

Input Hidden Hidden Output
Layer Layer | Layer Il Layer




Prediction in MLP
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Code is Worth Thousand Pictures

% Activation function
def shrink(z, gamma):
abcap = np.maximum(abs(z), np.zeros(z.shape)) - gamma
return abcap * np.sign(z)

% Define network arch

x = np.array((5, 1))

hl = np.zeros((3, 1)) ; h2 = np.zeros((3, 1))
o = np.zeros((2, 1))

% Define network parameters
A = np.random.randn((len(h1), len(x))) / np.sqrt(len(x)) "
B = np.random.randn((len(h2), len(h1))) / np.sqrt(len(hl))
C = np.random.randn((len(o), len(h2))) / np.sqrt(len(h2))

oty
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% Define functional connectivity
h1 = shrink(np.dot(A, x), 0.5)
h2 = shrink(np.dot(B, h1), 0.5)
o = shrink(np.dot(C, h2), 0.5)
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Hypothesis Class

e Architecture of NN is N = (V, E, 0)

w and N induce hypothesis Ay : RY — R/

Set of possible weights w € M defines a hypothesis class

Hy = {hyw : we M}

Architecture often hand-crafted, reflects insights of problem

Albeit not a convex set, error can be decomposed:

e Estimation error of NN (sample complexity): ~ |E]|

e Approximation error of NN (expressivenss):
many functions approximated by NN if || = O(exp(d)) o.w. ?

e Optimization error of NN (computational complexity):
Numerous hardness results, yet SGD often works well

N



Training NN
e harw defines a non-convex transformation
e Even if loss is convex ERM becomes non-convex
e Initialization is important: symmetry breaking, scale sensitive
e Gradient-based training takes into account NN's architecture

e back-propagation algorithm is an efficient way to calculate
V2 (h(nwy(X), y) using the chain rule

e Inference and gradient as computations on a graph
e Takes long time to train, yields good results on many tasks

e Many tricks-of-the-trade



[nitialization

Need to break symmetry, scale is important

w[u—>v]~N<O, ,1 )
in(v)

where in(v) = {u:u—veE}

N (o, %)
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Computation Graph

Graph for one dimensional problem (nodes topologically sorted)

2w, (x,y)) =log (1 + (wx — y)?) convex: |wx —y| <1

?Square: p = log(1+ r2)]

?Subtract:

r=s—y Input: y

1
i Scale: s = wx

aVariabIe: w l
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Gradient Using Chain Rule

e Fix x, y and define functions

p(z) = log(1 + z°)
ry(Z) =Z—-Yy

sx(2) = xz
e Write £ as a function of w
&w) = p(ry(sx(w))) = (poryos)(w) .
e Chain rule:
£(w) = (por os)(w)
= p'(ry(sx(w))) - (ry 0 5)'(w)
= p'(ry(sx(w))) - ry(se(w)) - sp(w)
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Forward Pass: Inference

v.output = v.op(v.inputs())

?pm —log(1+ )|

i Sx(w) = xw




Backward Pass: Gradient

e m->delta = 1
e Forv=m-1,..., 1:
e Foreach v s.t. u— v € E:
u->delta = v->delta * v->deriv(u)

2r/(1+ )
(6=2r/0+ )

1
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From Scalars to Neurons

Graph for one dimensional problem (nodes topologically sorted)

&w, (x,y)) =log (14 (w-x—y)?)

?Square: p = log(1+ r2)]
?Subtract: r=s—y 2
%nner—Product: S=Ww- x]<—‘i|npu7]
i Vector: w l
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Inference

?pm —log(1+ )|




Backprop




NN Learning Using SGD

1. Design a network architecture suitable for problem:

Number of layers

Hidden neurons in each layer
Connectivity between layers
Activation function

2. Define loss function between y and y = harw(X)

3. Initialize weights of network

4. SGD — Loop:

e Obtain a mini-batch of examples

o Perform forward/inference pass per example

e Perform backprop for each example

e Update weights synchronously or asyncronously



Structured Connectivity - ConvNets

Weights

Layer[n]

e Hidden nodes are connected to subset of nodes in previous layer
e Some of the weights are often shared between neurons
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Example: Digit Classification for MNIST

e Task: Handwritten digits recognition
e Input space: X ={0,1,..., 255}28x28
e Output space: Y ={0,1,..., 9}

e Multiclass categorization:

e Hypotheses of the form f : X — R
e Interpret f(x) as scores for each labels
e Predicted label: y = argmax;_, fj(x)

e Architecture:
h, = [AX—I— bl]Jr h, = [Bhl + b2]+ f=Ch,

e |ogistic-loss:

e SoftMax: P[i[x] = %

e Logloss: log(P[y|x]) = log (Zj exp(ﬁ-(x)) - fy(x)
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Conv Filters for MNIST

Weights

Layer[n]
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Tricks Of Trade

Input normalization: x — x/||x||

Initialization: normalize by \/]in(v)|

Regularization: weight-decay, dropout

Mini-batching:
async with small batches, sync with large batches

Improved gradient-based methods:
AdaGrad, Accelerated Gradient Descent, ...

Learning-rate: m: = O(|S|/t), ...

Much deeper dive into deep models @ Spring'18 :

C0OS-485 "Neural Networks: Theory and Applications”

Prof. Sebastian Seung



