COS324: Introduction to Machine Learning Lecture 17: Neural Networks

Prof. Elad Hazan & Prof. Yoram Singer

December 7, 2017

Single Neuron

- A neuron is a function of the form $\mathbf{x} \mapsto \sigma(\mathbf{w} \cdot \mathbf{x})$
- Activation function $\sigma: \mathbb{R} \to \mathbb{R}$
- For instance, the sigmoid function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Neural Network

- Obtained by connecting several neurons together
- Focus on feed-forward networks
- Directed (acyclic) graph G = (V, E) and denoting n = |V|
- Input nodes: nodes w/o incoming edges v₁,..., v_d
- Output nodes: nodes w/o outgoing edges v_{n-l+1}, \ldots, v_m
- Weights associated with each edge $\mathbf{w}: E \to \mathbb{R}$
- Computation defined by NN

$$o[v] = \sigma \left(\sum_{u \to v \in E} \mathbf{w}[u \to v] \, o[u] \right)$$

where for (input) node $j \in [d]$ we define $o[v_j] = x_j$

• Feedfoward NN defines a function $h: \mathbb{R}^d \to \mathbb{R}^l$

Multilayer Neural Networks (MLP)

- Layers $V = \{V_i\}_{i=1}^r$ with edges between adjacent layers
- Example: input d = 5, depth r = 3, size 5 + 6 + 1

Prediction in MLP

- $\mathbf{x} = (1, -1, 2, 2, 1) \xrightarrow{+} \xrightarrow{-}$
- Activations: $\sigma(z) = \operatorname{sign}(z) [|z| \gamma]_+$
- Define $A \in \mathbb{R}^{3 \times 5}$ $B \in \mathbb{R}^{3 \times 3}$ $C \in \mathbb{R}^{2 \times 3}$ where $M_{j,i} = w[i \to j]$
- $\mathbf{h}^1 = \sigma(A\mathbf{x}) = [-1.5, -0.5, -4.5]$ and $\sigma(\mathbf{v}) = (\sigma(v_1), \dots, \sigma(v_d))$
- $\mathbf{h}^2 = \sigma(B \mathbf{h}^1) = [0.5, 0, 3.5]$
- $\mathbf{o} = \sigma(C \, \mathbf{h}^2) = [0, 3]$

Code is Worth Thousand Pictures

```
% Activation function
def shrink(z, gamma):
  abcap = np.maximum(abs(z), np.zeros(z.shape)) - gamma
  return abcap * np.sign(z)
% Define network arch
x = np.array((5, 1))
h1 = np.zeros((3, 1)); h2 = np.zeros((3, 1))
o = np.zeros((2, 1))
% Define network parameters
A = np.random.randn((len(h1), len(x))) / np.sqrt(len(x))
B = np.random.randn((len(h2), len(h1))) / np.sqrt(len(h1))
C = np.random.randn((len(o), len(h2))) / np.sqrt(len(h2))
% Define functional connectivity
h1 = shrink(np.dot(A, x), 0.5)
h2 = shrink(np.dot(B, h1), 0.5)
o = shrink(np.dot(C, h2), 0.5)
```

Hypothesis Class

- Architecture of NN is $\mathcal{N} = (V, E, \sigma)$
- **w** and $\mathcal N$ induce hypothesis $h_{(\mathcal N,\mathsf w)}:\mathbb R^d\to\mathbb R^l$
- ullet Set of possible weights $ullet \in \mathcal{M}$ defines a hypothesis class

$$\mathcal{H}_{\mathcal{N}} = \{h_{\mathcal{N},\mathsf{w}} : \mathbf{w} \in \mathcal{M}\}$$

- Architecture often hand-crafted, reflects insights of problem
- Albeit not a convex set, error can be decomposed:
 - Estimation error of NN (sample complexity): $\sim |E|$
 - Approximation error of NN (expressivenss): many functions approximated by NN if $|V| = O(\exp(d))$ o.w. ?
 - Optimization error of NN (computational complexity): Numerous hardness results, yet SGD often works well

Training NN

- $h_{\mathcal{N},w}$ defines a non-convex transformation
- Even if loss is convex ERM becomes non-convex
- Initialization is important: symmetry breaking, scale sensitive
- Gradient-based training takes into account NN's architecture
- back-propagation algorithm is an efficient way to calculate $\nabla \ell \left(h_{(\mathcal{N},\mathbf{w})}(\mathbf{x}), y \right)$ using the chain rule
- Inference and gradient as computations on a graph
- Takes long time to train, yields good results on many tasks
- Many tricks-of-the-trade

Initialization

Need to break symmetry, scale is important

$$\mathbf{w}[u \to v] \sim N\left(0, \frac{1}{\sqrt{in(v)}}\right)$$

where $in(v) = |\{u : u \rightarrow v \in E\}|$

Computation Graph

Graph for one dimensional problem (nodes topologically sorted)

$$\ell(w, (x, y)) = \log(1 + (wx - y)^2)$$
 convex: $|wx - y| \le 1$

Gradient Using Chain Rule

• Fix x, y and define functions

$$\rho(z) = \log(1 + z^2)$$

$$r_y(z) = z - y$$

$$s_x(z) = xz$$

• Write ℓ as a function of w

$$\ell(w) = \rho(r_y(s_x(w))) = (\rho \circ r_y \circ s_x)(w) .$$

Chain rule:

$$\ell'(w) = (\rho \circ r_y \circ s_x)'(w)$$

$$= \rho'(r_y(s_x(w))) \cdot (r_y \circ s_x)'(w)$$

$$= \rho'(r_y(s_x(w))) \cdot r_y'(s_x(w)) \cdot s_x'(w)$$

Forward Pass: Inference

```
For v = 1, ..., m:
v.output = v.op(v.inputs())
```


Backward Pass: Gradient

- m->delta = 1
- For v = m-1, ..., 1:
 - Foreach u s.t. $u \rightarrow v \in E$: u->delta = v->delta * v->deriv(u)

From Scalars to Neurons

Graph for one dimensional problem (nodes topologically sorted)

$$\ell(\mathbf{w}, (\mathbf{x}, y)) = \log (1 + (\mathbf{w} \cdot \mathbf{x} - y)^2)$$

Inference

Backprop

NN Learning Using SGD

- 1. Design a network architecture suitable for problem:
 - Number of layers
 - · Hidden neurons in each layer
 - Connectivity between layers
 - Activation function
- 2. Define loss function between y and $\hat{y} = h_{\mathcal{N},w}(\mathbf{x})$
- 3. Initialize weights of network
- 4. SGD Loop:
 - Obtain a mini-batch of examples
 - Perform forward/inference pass per example
 - Perform backprop for each example
 - Update weights synchronously or asyncronously

Structured Connectivity - ConvNets

- Hidden nodes are connected to subset of nodes in previous layer
- Some of the weights are often shared between neurons

Example: Digit Classification for MNIST

- Task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, \dots, 9\}$
- Multiclass categorization:
 - Hypotheses of the form $f: \mathcal{X} \to \mathbb{R}^{|\mathcal{Y}|}$
 - Interpret $f(\mathbf{x})$ as scores for each labels
 - Predicted label: $\hat{y} = \arg \max_{j=0}^{9} f_j(\mathbf{x})$
- Architecture:

$$\mathbf{h}_1 = [A\mathbf{x} + \mathbf{b}_1]_+ \quad \mathbf{h}_2 = [B\mathbf{h}_1 + \mathbf{b}_2]_+ \quad \mathbf{f} = C\mathbf{h}_2$$

- Logistic-loss:
 - SoftMax: $\mathbb{P}[i|\mathbf{x}] = \frac{\exp(f_i(\mathbf{x}))}{\sum_i \exp(f_i(\mathbf{x}))}$
 - LogLoss: $\log(\mathbb{P}[y|\mathbf{x}]) = \log(\sum_{j} \exp(f_j(\mathbf{x})) f_y(\mathbf{x}))$

Conv Filters for MNIST

Tricks Of Trade

- Input normalization: $\mathbf{x} \to \mathbf{x}/\|\mathbf{x}\|$
- Initialization: normalize by $\sqrt{|\text{in}(v)|}$
- Regularization: weight-decay, dropout
- Mini-batching: async with small batches, sync with large batches
- Improved gradient-based methods:
 AdaGrad, Accelerated Gradient Descent, ...
- Learning-rate: $\eta_t = O(|S|/t)$, ...
- Much deeper dive into deep models @ Spring'18: COS-485 "Neural Networks: Theory and Applications" Prof. Sebastian Seung