
COS	324:		Lecture	14

Boosting

Elad Hazan Yoram Singer

Admin

• Application	exercise	– due	today
• Next	theory	exercise	(decision	trees	and	entropy),	next	Tue
• Per	student	request	– list	of	common	mistakes	in	exercises	to	be	
posted	online

Agenda

Last	lecture:
• Stepped	beyond	linear	classifiers:	decision	trees
• Intuitive,	easy	to	interpret,	expressive
• Sample	complexity	is	reasonable	(for	bounded	size)
• Computationally	ill-behaved
• Thus	we	looked	at	efficient	heuristics	

Today:
• Theoretically sound technique to take a rule of thumb, and turn

it into an accurate classifier

Rules	of	thumb,	easy	to	come	by?

• One-word	classifier	for	text	
• One-pixel	classifier	for	images
• Small	decision	tree	created	by	CART
• …

Can	we	turn	rules	of	thumb	into	accurate	classifiers?	

Boosting	[Schapire]:	taking	a	generic	weak-learner	(rule	of	
thumb),	and	using	it	to	PAC	learn

Rules	of	thumb

Learning	problem	𝐿 = (𝑋, 𝑌, 𝐻)	is	PAC-learnable if	there	exists	a	learning	
algorithm	s.t. for	every	𝛿, 𝜖 > 0,	there	exists		m = 𝑓 𝜖, 𝛿, 𝐻 < ∞,	s.t. after	
observing	S	examples	from	any	distribution,	for	 𝑆 = 𝑚,	returns	a	hypothesis	
ℎ ∈ 𝐻	,	such	that	with	probability	at	least

1 − 𝛿
it	holds	that	

Pr ℎ(𝑥) ≠ 𝑦 = 𝑒𝑟𝑟 ℎ ≤ 𝜖

Formalizing	the	boosting	question

Learning	problem	𝐿 = (𝑋, 𝑌, 𝐻)	is	weakly	PAC-learnable if	there	exists	a	learning	
algorithm	(called	weak	learner)	s.t. for	some 𝛾 > 0,	there	exists		m = 𝑓 𝜖, 𝛿, 𝐻 <
∞,	s.t. after	observing	S	examples	from	any	distribution,	for	 𝑆 = 𝑚,	returns	a	
hypothesis	ℎ ∈ 𝐻	,	such	that	with	probability	at	least

I
J

it	holds	that	

Pr ℎ(𝑥) ≠ 𝑦 = 𝑒𝑟𝑟 ℎ ≤
1
2
− 𝛾

Formalizing	the	boosting	question

The	boosting	question

• Is	weak	PAC	learnability	equivalent	to	(strong)	PAC	learnability?
• i.e.,	does	there	exist	an	efficient	algorithm	that	takes	as	an	input	a	
weak	learner,	and	converts	it	to	a	strong	learner?	

• Answer:	Yes!	[Shapire ‘90],	culminating	in	the	AdaBoost algorithm	
[Freund	and	Schapire ‘93]

For	any	randomized	algorithm	that	succeeds	with	probability	2/3:	
Repeat	O(log(N

O
)) times	,	and	with	probability	at	least	1 − 𝛿,	it	will	

succeed	at	least	once!	

Proof	sketch:	prob of	failure	is	upper	bounded	by:

∏ 1 − I
J
=�

RSN… U(VWXYZ)
1 − I

J

[(VWXYZ) ≤ 1 − 𝛿

Boosting	the	error	probability

Learning	problem	𝐿 = (𝑋, 𝑌, 𝐻)	is	weakly	PAC-learnable if	there	exists	a	learning	
algorithm	(called	weak	learner)	s.t. for	some 𝛾 > 0,	and	every	𝛿 > 0, there	exists		
m = 𝑓 𝜖, 𝛿, 𝐻 < ∞,	s.t. after	observing	S	examples	from	any	distribution,	for	
𝑆 = 𝑚,	returns	a	hypothesis	ℎ ∈ 𝐻	,	such	that	with	probability	at	least

1 − 𝛿
it	holds	that	

Pr ℎ(𝑥) ≠ 𝑦 = 𝑒𝑟𝑟 ℎ ≤
1
2
− 𝛾

Formalizing	the	boosting	question

change	the	distribution of	the	examples	to	focus	on	the	hard	
instance,	and	every	time	find	a	weak	learner	for	the	“harder”	
distribution.

Finally,	combine	all	weak	learners	into	one	rule.	

1. How	to	change	the	distribution	over	examples?	
2. How	to	combine	all	weak	learners?	

General	idea

Use	majority	vote

Multiplicative	
updates!

• Input:	learning	problem	𝐿 = (𝑋, 𝑌, 𝐻)	,	weak	learner	for	L
• Output:	strong	learner	for	L,	i.e.	hypothesis	such	that	

𝑒𝑟𝑟 ℎ ≤ 𝜖

Simple	boosting	algorithm

1. Take	m =
lmn o pVWXYZ

q
samples	from	distribution	of	L,	call	it	S

2. Let	𝑝N = 𝑢𝑛𝑖𝑓(𝑚) be	the	uniform	distribution	over	S

What	happens	if	we	find	h	that	has	zero	error	on	S??	

Simple	boosting	algorithm

1. Take	m	samples	from	distribution	of	L,	call	it	S	(think	of	m =
lmn o pVWXYZ

q
)

2. Let	𝑝N = 𝑢𝑛𝑖𝑓(𝑚) be	the	uniform	distribution	over	S

3. For	t	=1,2,…,T	do:
1. Let	ht be	the	output	of	the	weak	learner	on	current	distribution	pt
2. Update	distribution	by	multiplicative	update	rule:

𝑝vpN 𝑖 =
𝑝v 𝑖 1 − 𝜖 wx(R)

∑ 𝑝v(𝑖) 1 − 𝜖 wx(R)�
R

	

𝑟v 𝑖 = 1zx {| S}|

4. Return	the	majority	of	all	hypothesis:

ℎ~ 𝑥 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 ℎN 𝑥 , ℎI 𝑥 , … , ℎ� 𝑥

= 𝑠𝑖𝑔𝑛(�ℎv 𝑥
�

v

	−
𝑇
2
)

Simple	boosting	algorithm

Theorem:		
𝑒𝑟𝑟� ℎ~ = 0

(and	hence	the	generalization	error	of	ℎ~ is	at	most	𝜖,	though	there’s	a	
slight	subtlety	here	we’ll	not	go	into)

Simple	boosting	algorithm

Observation 1:

by	the	definition	of	rt,	pt,	(𝑟v 𝑖 = 1zx {| S}|)		and	the	weak	learning	
guarantee,	we	have	that	

𝑟v�𝑝v ≥
1
2
+ 𝛾

And	thus
1
𝑇
�𝑟v�𝑝v

�

v

≥
1
2
+ 𝛾

Proof	of	simple	boosting	alg guarantee

Observation	2:		

by	the	online-learning	multiplicative	weights	guarantee:	(lecture	2+3)

�𝑟v�𝑝v

�

v

≤ (1 + 𝜖)�𝑟v 𝑖∗
�

v

+
log𝑚
𝜖

Take	𝜖 = 𝛾

�𝑟v�𝑝v

�

v

≤ (1 + 𝛾)�𝑟v 𝑖∗
�

v

+
log𝑚
𝛾

Proof	of	simple	boosting	alg guarantee

From	both	observations:
Suppose	that	some	example	i* has	more	than	½	errors,	then:		

1
2
+ 𝛾 ≤

1
𝑇
�𝑟v�𝑝v

�

v

≤
1 + 𝛾
𝑇

�𝑟v 𝑖∗
�

v

+
log𝑚
𝑇𝛾

≤
1 + 𝛾
2

+
log𝑚
𝑇𝛾

Take	𝑇 = �	VWX �
��

,	we	get:
1
2
+ 𝛾 ≤

1
2
+
3𝛾
4

By	contradiction!
Thus,	after	T	iterations	all	examples	are	correctly	classified	by	majority!

Proof	of	simple	boosting	alg guarantee

We	concluded	with	the	theorem:		
𝑒𝑟𝑟� ℎ~ = 0

(and	hence	the	generalization	error	of	ℎ~ is	at	most	𝜖,	though	there’s	a	
slight	subtlety	here	we’ll	not	go	into)

Simple	boosting	algorithm

1. Take	m	samples	from	distribution	of	L,	call	it	S	(think	of	m =
lmn o pVWXYZ

q
)

2. Let	𝑝N = 𝑢𝑛𝑖𝑓(𝑚) be	the	uniform	distribution	over	S

3. For	t	=1,2,…,T	do:
1. Let	ht be	the	output	of	the	weak	learner	on	current	distribution	pt
2. Update	distribution	by	multiplicative	update	rule:

𝑝vpN 𝑖 =
𝑝v 𝑖 1 − 𝜖v wx(R)

∑ 𝑝v(𝑖) 1 − 𝜖v wx(R)�
R

	

𝑟v 𝑖 = 1zx {| S}|

4. Return	the	weighted	majority	of	all	hypothesis:

ℎ~ 𝑥 = 𝑠𝑖𝑔𝑛(�𝜖vℎv 𝑥
�

R N

−
𝑇
2
)

AdaBoost

For	𝜖v = 𝑟v�𝑝v −
N
I

AdaBoost in	practice

AdaBoost in	practice

