
COS	324:		Lecture	13

Beyond	linear	classifiers:
decision	trees

Elad Hazan Yoram Singer

This	lecture	contains	material	from	the	
T.	Michel	text	“Machine	Learning”,	and	slides	adapted	from
David	Sontag,	 Luke	Zettlemoyer,	Carlos	Guestrin,	and	Andrew	Moore	



Admin

• New	exercise	– theory	– due	in	two	weeks
(formal	announcement	next	week,	but	out	now	for	your	convenience)



Agenda

Thus	far:
• Rigorous	definition	of	(PAC)	learnability
• Efficient	algorithms	for	learning	based	on	convex	optimization	
• linear	classifiers	(perceptron,	SGD,	multiclass,…)

Today:
• Decision	trees	
• Build	up	for	other	non-linear	machines	(&	neural	networks)



Classification

Goal: Find best mapping from domain (features) to output (labels)  

• Given a document (email), classify spam or ham.  
Features = words , labels = {spam, ham}

• Given a picture, classify if it contains a chair or not
features = bits in a bitmap image, labels = {chair, no chair}

GOAL: automatic machine that learns from examples

Terminology for learning from examples:
• Set aside a ”training set” of examples, train a classification machine
• Test on a “test set”, to see how well machine performs on unseen examples



Classifying	fuel	efficiency

• 40	data	points

• Goal:	predict	MPG

• Need	to	find:
f : X	à Y

• Discrete	data	(for	now)

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

X Y



Decision	trees	for	classification

• Why	use	decision	trees?		
• What	is	their	expressive	power?
• Can	they	be	constructed	automatically?	
• How	accurate	can	they	classify?	
• How	well	do	decision	trees	generalize?	(sample	complexity)
• Computational	complexity	of	finding	the	best	tree	



Some	real	examples	(from	Russell	&	Norvig,	Mitchell)	
• BP’s	GasOIL system	for	separating	gas	and	oil	on	offshore	
platforms	- decision	trees	replaced	a	hand-designed	rules	
system	with	2500	rules.	C4.5-based	system	outperformed	
human	experts	and	saved	BP	millions.	(1986)	

• learning	to	fly	a	Cessna	on	a	flight	simulator	by	watching	
human	experts	fly	the	simulator	(1992)	

• can	also	learn	to	play	tennis,	analyze	C-section	risk,	etc.

Decision	trees	for	classification



• interpretable/intuitive,	popular	in	medical	applications	
because	they	mimic	the	way	a	doctor	thinks	

• model	discrete	outcomes	nicely	
• C4.5	and	CART	- from	“top	10	data	mining	methods”	- very	
popular

• very	expressive	

Decision	trees	for	classification



decision trees  f  : X à Y

• Each internal node tests an 
attribute xi

• One branch for each possible 
attribute value xi=v

• Each leaf assigns a class y 

• To classify input x: traverse 
the tree from root to leaf, 
output the labeled y 

Cylinders

3 4 5 6 8

good bad badMaker Horsepower

low med highamerica asia europe

bad badgoodgood goodbad

Human	interpretable!



Expressive	power	of	DT

Consider	Boolean	functions
F	=	 0,1 $ ↦ {0,1}

• How	many	functions	can	DT	express?	

X1 X2 X3 F(X1,X2,X3)
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0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0
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Sample	complexity	of	DT

• Sample	complexity	of	all	decision	trees?	
• Smaller	trees?		(bound	 their	size)

X1 X2 X3 F(X1,X2,X3)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

?

0



What	is	the
Simplest	Tree?

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

Is	this	a	good	tree?

[22+,	18-] Means:	
correct	on	22	examples
incorrect	on	18	examples

predict
mpg=bad



Are	all	decision	trees	equal?

• Many	trees	can	represent	the	same	concept
• But,	not	all	trees	will	have	the	same	size!

– e.g.,	((A	and	B)	or	(not	A	and	C))
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Sample	complexity	of	DT

• How	many	trees	over	d	Boolean	variables	with	k	nodes?	
≤ 𝑑*× 2𝑘 + 1 !	

A	binary	tree	over	k	variables	
has	k+1	leaves.

To	bound	how	many	such	trees:
add	k+1	“leaves”,	write	down	

the	tree	in	DFS	order.

Choose	k	
variables	from	

d,	with	
repetition



Sample	complexity	of	DT

• How	many	trees	over	d	Boolean	variables	with	k	nodes?	
𝑑*× 2𝑘 + 1 !	

Thus,	by	fundamental	theorem	of	statistical	learning,	sample	complexity	is:

𝑂
log 𝐻 + log1𝛿

𝜖 = 𝑂
k	log(d) + log 1𝛿

𝜖

Choose	k	
variables	from	

d,	with	
repetition

A	binary	tree	over	k	variables	
has	k+1	leaves.

To	bound	how	many	such	trees:
add	k+1	“leaves”,	write	down	

the	tree	in	DFS	order.



Computational	complexity	of	DT

• Good	news:	sample	complexity	is	descent.	
Fundamental	theorem	says	we	can	learn	with	ERM	rule!

• Bad	news:	Learning	the	simplest	(smallest)	decision	tree	is	an	NP-
complete	problem	[Hyafil &	Rivest ’76]	

• Solution	1:	Resort	to	a	greedy	heuristic:
– Start	from	empty	decision	tree
– Split	on	next	best	attribute	(feature)
– Recurs

• Next	week:	more	rigorous	theoretical	solution	– Boosting!



A	Decision	Stump



Key	idea:	Greedily	learn	trees	using	
recursion

Take the
Original
Dataset..

And partition it 
according
to the value of 
the attribute we 
split on

Records 
in which 
cylinders 

= 4 

Records 
in which 
cylinders 

= 5

Records 
in which 
cylinders 

= 6 

Records 
in which 
cylinders 

= 8



Recursive	Step

Records in 
which cylinders 

= 4 

Records in 
which cylinders 

= 5

Records in 
which cylinders 

= 6 

Records in 
which cylinders 

= 8

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..



Second	level	of	tree

Recursively build a tree from the seven 
records in which there are four cylinders 
and the maker was based in Asia

(Similar recursion in 
the other cases)



A full tree



Splitting:	choosing	a	good	attribute

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F
F T F
F F F

X1

Y=t : 4
Y=f : 0

t f

Y=t : 1
Y=f : 3

X2

Y=t : 3
Y=f : 1

t f

Y=t : 2
Y=f : 2

Would we prefer to split on X1 or X2?  

Idea: use counts at leaves to define 
probability distributions, so we can 
measure uncertainty!



Measuring	uncertainty

• Good	split	if	we	are	more	certain	about	
classification	after	split
– Deterministic	good	(all	true	or	all	false)
– Uniform	distribution	bad
– What	about	distributions	in	between?

P(Y=A) = 1/4 P(Y=B) = 1/4 P(Y=C) = 1/4 P(Y=D) = 1/4

P(Y=A) = 1/2 P(Y=B) = 1/4 P(Y=C) = 1/8 P(Y=D) = 1/8



Entropy
Entropy	H(Y) of	a	random	variable	Y

More uncertainty, more entropy!

Information Theory interpretation:
H(Y) is the expected number of bits 
needed  to encode a randomly 
drawn value of Y (under most 
efficient code) 

Probability	of	heads
En
tr
op
y

Entropy	of	a	coin	flip



High,	Low	Entropy

• “High	Entropy”	
– Y	is	from	a	uniform	like	distribution
– Flat	histogram
– Values	sampled	from	it	are	less	predictable

• “Low	Entropy”	
– Y	is	from	a	varied	(peaks	and	valleys)	
distribution

– Histogram	has	many	lows	and	highs
– Values	sampled	from	it	are	more	predictable

(Slide from Vibhav Gogate)



Entropy	Example

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F

P(Y=t) = 5/6
P(Y=f) = 1/6

H(Y) = - 5/6 log2 5/6 - 1/6 log2 1/6
= 0.65

Probability	of	heads

En
tr
op
y

Entropy	of	a	coin	flip



Conditional	Entropy
Conditional	Entropy	H(Y |X) of	a	random	variable	Y conditioned	on	a	

random	variable	X

X1

Y=t : 4
Y=f : 0

t f

Y=t : 1
Y=f : 1

P(X1=t) = 4/6
P(X1=f) = 2/6

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F

Example:

H(Y|X1) = - 4/6 (1 log2 1 + 0 log2 0)
- 2/6 (1/2 log2 1/2 + 1/2 log2 1/2)

= 2/6



Information	gain
• Decrease	in	entropy	(uncertainty)	after	splitting

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F

In our running example:

IG(X1) = H(Y) – H(Y|X1)
= 0.65 – 0.33 

IG(X1) > 0 à we prefer the split!



Learning	decision	trees

• Start	from	empty	decision	tree
• Split	on	next	best	attribute	(feature)

– Use,	for	example,	information	gain	to	select	attribute:

• Recurs



Look	at	all	the	
information	
gains…

Suppose we want 
to predict MPG



When	to	stop?

First split looks good! But, when do we stop?



Base Case 
One

Don’t split a 
node if all 
matching 

records have 
the same 

output value



Base Case 
Two

Don’t split a 
node if data 
points are 

identical on 
remaining 
attributes



Base	Cases:	An	idea

• Base	Case	One:	If	all	records	in	current	data	
subset	have	the	same	output	then	don’t	recurs

• Base	Case	Two:	If	all	records	have	exactly	the	
same	set	of	input	attributes	then	don’t	recurs

Proposed Base Case 3:
If all attributes have small 

information gain then don’t recurs

•This is not a good idea



The	problem	with proposed	case	3
a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b

The information gains:



If	we	omit proposed	case	3:

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b
The resulting decision tree:

Instead, perform 
pruning after building a 
tree



Non-Boolean	Features

• Real-valued	features?



Real->	threshold

WEIGHT	>	?

𝑁𝑜 𝑌𝑒𝑠

• Number of thresholds <= # of different values in 
dataset

• Can choose threshold based on information gain



Summary:	Building	Decision	Trees

BuildTree(DataSet,Output)
• If	all	output	values	are	the	same	in	DataSet,	return	a	leaf	node	

that	says	“predict	this	unique	output”
• If	all	input	values	are	the	same,	return	a	leaf	node	that	says	

“predict	the	majority	output”
• Else	find	attribute	X with	highest	Info	Gain
• Suppose	X has	nX distinct	values	(i.e.	X	has	arity nX).	

– Create	a	non-leaf	node	with	nX children.	
– The	i’th child	should	be	built	by	calling

BuildTree(DSi,Output)
Where	DSi contains	the	records	in	DataSetwhere	X	=	ith value	of	X.



Machine Space Search

• ID3 / C4.5 / CART search for a succinct tree that 
perfectly fits the data. 

• They are not going to find it in general (NP-hard)

• Entropy-guided splitting – well-performing 
heuristic. Exists others.  



MPG Test 
set error

The test set error is much worse than the 
training set error…

…why?



Decision	trees	will	overfit



Overfitting

• Precise	characterization	– statistical	learning	theory
• Special	technics	to	prevent	overfitting	in	DT	learning

• Pruning	the	tree,	e.g.	“reduced	error”	pruning:
Do	until	further	pruning	is	harmful:
1. Evaluate	the	impact	on	validation	(test)	set	of	the	data	of	pruning	each	possible	node	

(and	it’s	subtree)
2. Greedily	remove	one	that	most	improves	validation	(test)	error

• Next	lecture:	a	theoretically	sound	way	to	make	use	of	tree	heuristics:	
BOOSTING!	


