COS324: Introduction to Machine Learning Lecture 12: Similarity Learning

Prof. Elad Hazan & Prof. Yoram Singer

Background

- So far we focused on multiclass problems where each example is associated with a label / category
- We also discussed incorporation of misclassification cost that is not the same across classes
- Settings where feedback is relative w.r.t pairs of instances

 End of lecture describes ways to build multiclass classifiers from similarity operators

Problem Setting

• Training set of pairs of instances with similarity feedback

$$S = \{(\mathbf{x}_i^1, \mathbf{x}_i^2, y_i)\}_{i=1}^m$$

- Feedback $y_i \in \{-1, +1\}$ similar (y = +1) dissimilar (y = -1) $\mathbf{x}^1 \sim \mathbf{x}^1 \Leftrightarrow v = +1$ $\mathbf{x}^1 \not\sim \mathbf{x}^1 \Leftrightarrow v = -1$
- Labels can be obtained directly from similarity feedback or as a by-product of multi-labeled date

$$(\mathbf{x}_i, y_i)$$
, (\mathbf{x}_j, y_j) where $y_i, y_j \in [k] \Rightarrow (\mathbf{x}_i, \mathbf{x}_j, (-1)^{\mathbb{1}[y_j \neq y_j]})$

- · Similarity feedback "flattens" uneven class distribution
- Example: assume k = 3 and

$$|\{i: y_i = 1\}| = \frac{4m}{5} |\{i: y_i = 2\}| = \frac{m}{10} |\{i: y_i = 3\}| = \frac{m}{10}$$

then number of similar pairs is $\approx \frac{2m}{3}$

ERM for Similarity Learning

- Instances $\mathbf{x}_{i}^{j} \in \mathcal{X} \ (i \in [m] \ j \in [2])$
- Similarity function operates on pairs of elements

$$h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

• If $\mathbf{x}_i^1 \sim \mathbf{x}_i^2$ we want

$$h(\mathbf{x}_i^1, \mathbf{x}_i^2) \gg 0$$

• If $\mathbf{x}_i^1 \not\sim \mathbf{x}_i^2$ we want

$$h(\mathbf{x}_i^1, \mathbf{x}_i^2) \ll 0$$

First Attempt

- Transform $\mathbf{x}^1, \mathbf{x}^2 \mapsto \Delta = \mathbf{x}^1 \mathbf{x}^2$
- Set $h(\mathbf{x}^1, \mathbf{x}^2) = \sum_j w_j |\Delta[j]| + b$
- Works 'ok', just 'ok'
- Left pair will be classified as dissimilar & right pair as similar

Shift Invariance

Two vectors \mathbf{u}, \mathbf{v} such that $u[1:d-m] \approx v[m+1:d]$

However, similarity score $h(\mathbf{u}, \mathbf{v}) \approx 0$

Bilinear Forms

Define

$$h(\mathbf{u}, \mathbf{v}) = \mathbf{u}^{\top} A \mathbf{v}$$
 where $A \in \mathbb{R}^{d \times d}$

which amounts to

$$h(\mathbf{u},\mathbf{v}) = \sum_{i=1}^d \sum_{j=1}^d A_{ij} u_i v_j$$

Example with d = 4

u *U*₁ *U*₂ *U*₃ *U*₄

A _{1,1}	A _{1,2}	A _{1,3}	A _{1,4}	
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,4}	
A _{3,1}	A _{3,2}	A _{3,3}	A _{3,4}	
A _{4,1}	A _{4,2}	A _{4,3}	A _{4,4}	

Surrogate Losses for Similarity Functions

- Example a pair $(\mathbf{x}^1, \mathbf{x}^2)$ and feedback $y \in \{-1, +1\}$
- Real-valued prediction $h(\mathbf{x}^1, \mathbf{x}^2) = (\mathbf{x}^1)^T A \mathbf{x}^2$
- Hinge Loss with margin γ

$$\left[\boldsymbol{\gamma} - \boldsymbol{y} \left(\mathbf{x}^1 \right)^{\mathsf{T}} A \, \mathbf{x}^2 \right]$$

• Logistic Loss with margin γ

$$\log\left(1 + \exp\left(\gamma - y\left(\mathbf{x}^{1}\right)^{\mathsf{T}} A \mathbf{x}^{2}\right)\right)$$

Alternative Formulation

• Define a $d \times d$ matrix $Z \stackrel{\text{def}}{=} (\mathbf{x}^1) (\mathbf{x}^2)^{\top}$

x_1^1		x_1^2	x_2^2	x_3^2	x ₄ ²	\mathbf{x}^2	$Z_{1,1}$	$Z_{1,2}$	$Z_{1,3}$	$Z_{1,4}$
x_{2}^{1}							$Z_{2,1}$	$Z_{2,2}$	$Z_{2,3}$	$Z_{2,4}$
x_3^1							Z _{3,1}	$Z_{3,2}$	$Z_{3,3}$	$Z_{3,4}$
x_4^1							Z _{4,1}	$Z_{4,2}$	$Z_{4,3}$	$Z_{4,4}$
\mathbf{x}^1	ı				<u> </u>			Z	7	

- Remember, Z stands for Zorro and not Zero
- Define $A \bullet Z \stackrel{\text{def}}{=} \sum_{i,j} A_{i,j} Z_{i,j}$
- Use SGD for ERM in order to find A

Skeleton of SGD for Similarity

Input: dataset of labeled pairs $S = \{\mathbf{x}_i^1, \mathbf{x}_i^2, y_i\}$

Transform:
$$\mathbf{x}_{i}^{1}, \mathbf{x}_{i}^{2} \mapsto Z_{i}$$
 where $Z_{i} := (\mathbf{x}_{i}^{1}) (\mathbf{x}_{i}^{2})^{\top}$

Loss:
$$f_i(A) = \ell(A \bullet Z_i)$$
 and $F(A) = \frac{1}{m} \sum_{i=1}^{m} f_i(A)$

Gradient:
$$\hat{\nabla}_A(F) = \frac{1}{|S'|} \sum_{i \in S'} \dot{\ell}(A \bullet Z_i) Z_i$$
 where $\dot{\ell}(\mu) = \frac{d\ell}{d\mu}$

Train: call SGD with F, S, $\nabla_A F \Rightarrow \hat{A}$

Predict: for $(\tilde{\mathbf{x}}^1, \tilde{\mathbf{x}}^2)$ output $\operatorname{sign}((\tilde{\mathbf{x}}^1)^T A \tilde{\mathbf{x}}^2)$

Remarks

• It is often required that $h(\mathbf{x}^1, \mathbf{x}^2) = h(\mathbf{x}^2, \mathbf{x}^1)$

• Symmetric Zorro

$$Z \stackrel{\text{def}}{=} \frac{1}{2} (\mathbf{x}^1) (\mathbf{x}^2)^{\top} + \frac{1}{2} (\mathbf{x}^2) (\mathbf{x}^1)^{\top}$$

Similarity matrix can be used to define a pseudo-metric

$$\|\mathbf{x}\|_A^2 = \mathbf{x}^{\mathsf{T}} A \mathbf{x} \Rightarrow \|\mathbf{x}^1 - \mathbf{x}^2\|_A \stackrel{\text{def}}{=} \|\mathbf{v}\|_A \text{ where } \mathbf{v} = \mathbf{x}^1 - \mathbf{x}^2$$

However, need to constrain A to be positive semi-definite (PSD)

$$A \in \{M : M \geq 0\}$$
 where $M \geq 0 \Leftrightarrow \forall \mathbf{v} : \mathbf{v}^{\mathsf{T}} M \mathbf{v} \geq 0$

• Projecting a matrix onto the PSD cone is expensive: $O(d^3)$