COS324: Introduction to Machine Learning
Lecture 10: Gradient Methods in Machine Learning

Prof. Elad Hazan & Prof. Yoram Singer
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Recap & Today

e Reminder of convexity, GD, and SGD

e Linear regression

1.
2.
3.

Problem definition
Direct solution

SGD for linear regression

e Binary classification

1.

Surrogate losses

2. Sub-gradients
3.
4

Perceptron revisited

. SGD for binary classification

e Beyond binary learning problems

N



Convex Sets

Q is convex set: Vu,v € Q, line segment between u and v is in Q

Vael0,1] au+(1—a)ve

Non-convex Convex
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Convex Functions

Function f : 2 — R is convex if Vu,v € C and a € [0, 1],

flau+ (1 —a)v) < af(u)+ (1 —a)f(v)

af(u) + (1 —a)f(v)

flou+ (1 —a)v)

au+ (1 —oa)v



Tangents Lie Below f

Gradient of f at w: Vf(w) = (af(W) ..... 3f(W)>

6W1 awd
If £ is convex and differentiable, then

Yu, f(u)>f(w)+Vf(w)- - (u—w)




Convex Optimization & Learning

Convex optimization,
min f(w)
weQ
where f is a convex function and €2 is a convex set

C.O. for Machine learning,
1 m
fw) = " 25 (w, (xj,¥))
=

where £() is a convex loss function in w and assume Q = RY

Often abbreviate fi(w) < £ (w, (x;, ¥;)) or £i(w) = £ (w, (x;, y;))



Gradient Descent

1

e Initialize w! (typically w! = 0)

e Fort=1,...,T:
e Set learning-rate n* (often fixed)
e Perform gradient descent step:
witl = wt — ntvF(wh)

W VAW
|S| i€S

e Output w’ = + Ewt
t—1



Gradient Descent - Properties

Assume or constrain ||w|| < D/2 therefore

= w'—w| < |lw']|+[w*[| <D

Assume |[VF(wh)| < G

Convergence rate of GD:

- T * %
f(w )—f(W)Sﬁ

e However, each iteration requires O(dm) operations
[d — dimension, m — number of examples]



Iterates of Gradient Descent
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Stochastic Gradient Descent

1

e Initialize w! (typically w! = 0)

e Fort=1,...,T:
e Set learning-rate n* (typically decreasing)

e Perform stochastic gradient descent step:
e Choose S’ C S at random

e Update

witl — wt — ntvf(wt)

1
—w -7 VF(w

ies’

T

=l

Il
—=
M -
Er-r

e Qutput

if
I\
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Stochastic Gradient Descent - Properties

e Assume that
Vi [VHwH)I<G

in contrast to GD, [|[Vf(w!)| <G
e Convergence rate of GD:
DG
vT

e Each iteration requires O(dc) operations, c is sub-sample size

E[f(w)] — f(w") <
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Iterates of SGD
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Regression Problems

e Automatic Kelly Blue Book: value assessment of used cars
e Collect sale information of cars: sold for $$

e For each car gather model year, # accidents, make, mileage #
of previous owners, last sold for $$$, ...

Year | Acci | Make | Mile | Ownr | Las$ || Cur$
o7 5 To 120 3 2.5 0.5
16 1 Te 17 0 80 60
12 0 Su 43 1 29 22

X1 X2 X3 X4 X5 X6 y

e How to represent symbolic features (Toyota, Tesla, Subaru) ?
e How to represent ordered sets (#accidents: 0 < 1 <2< ...) 7
e How to represent numeric features (v$, log(v$), log(v$) — b) ?



Linear Regression

Each row is an example x; € R

Last column is a target y; € R

Create m x d matrix s.t. X is j'th entry of x;

Create column vector y from y1,..., yn

Find a solution for the linear set of equations Xw =y
e Solution may not exist

e Multiple solutions may exist
e Complexity O(md + d3)

e Approximately solve, Xw ~y namely Vi : w-Xx; = y;

Notion of ~ 7
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Regression Losses

e Convexloss £:R =Ry ; £(z)=4L(w-x—y)

e Example / induces convex loss
Li(w) = £(w-x; — )
e Total loss:

Fw) =S e (wox; )
i=1

e Concrete losses £(z) = ...

22 |z| Z2* ... min{|z]| = 7.0} exp(z)+ exp(—z2)
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Least Squares Regression £(z) = %
e Parameters: radius D, learning rate 7,

e Initialize: w! =0

e Update
wits = w! — n'vF(wh)

. D
witl = min {1

B Viasd

t
e Output w’ :%Zwt
t=1

2

number of iterations T

wits
|



Pesky Learning Rate
e Recall that n = G\F where

IVFwHlI <G w'—w'[ <D

e Assume or normalize such that Vi: ||x;|| < b |yj| <c

Constrain Vt : |lwt|| < D/2

We thus get: |lwf —w*|| < [|wl| + ||lw*]| < D

In addition, we get a bound on gradients,
|(w - x; — yi)xil| < |w-x; — yilllx]]
< |w-x; —yilb
< (lw- x|+ |yil)b
< (Db+c)b [Cauchy—Schwarz]

And we can set n = but in practice ...

D
(Db+c)bVT
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Binary Classification

e Examples x; € R?

Labels y; € {—1,+1}

Predictor / classifier: hy(x) = sign(w - x — b)

b is called a bias term (assume it is zero for time being)

Goal,

mwin % 2 1fsign(w - x;) # il

First attempt: define z = y(w -x) and £°71(z) = 1[z < 0]

Can we use (stochastic) gradient descent ?
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Linear Classifiers

e Domain: Euclidean space x € X = R?
e Hypothesis class: thresholding linear predictors

hw(x) = sign (w - x — b)




0-1 Loss

1.0 A —

0.8 A

0.6

0.4

0.2

0.0 A

-100 -7.5 =50 =25 0.0 2.5 5.0 7.5 10.0

“Utopia™ combinatorial problem which is NP-Hard



Classification Margin
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Surrogate Losses for Classification

e Convex losses w.r.t z = y(w - x) which satisfy

Uz) > £07(2)

e Exp-loss,
exp(—2z)
e | og-loss,
log (1 + exp(—2))
e Hinge-loss,

max{0,1 -z} =[1—-2z],

Squared-error with A =w -x—y,

LA) =0 = (w-x—y)?
=y*(w-x—y)?

=(w-x)-17? = £Lz)=(1-2)?



— lo-1
m— |0g(1 + exp(z))
54 — 1 —-2Z],
— exp(-2)
4 -
3 -
2 -
1 4
0 4
—4 -2 2 4
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Sub-gradients

e v is sub-gradient of f at w if Yu, f(u) > f(w)+v-(u—w)
e The differential set, 0f(w), is the set of sub-gradients of f at w

e Lemma: f is convex iff for every w, of (w) # ()




Optimality Property

f is “locally flat" around w, i.e. 0 is a sub-gradient,

iff
w is a (not “the") global minimizer

We can replace gradients with sub-gradients:

t+1

witl = w! —ng’ where g* € of (w?)



Hinge Loss
£(z) =max{0,1 -2z} =[1-2z],
"5 (w, (x,y)) = max{0, 1 — y(w - x)}

Y 1inge ‘Q

*
o

1 y(w - x)

Non-differentiable at z =1

Can we use SGD 7
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SGD for Hinge-Loss

e Fully stochastic case — single example

e Subgardient of [1 —z],

0 z>1
0l(z) = -1 z<1
(-1,0) z=1

0l(w, (x,y)) = yx0L(z) where z = y(w-Xx)

e SGD update on iteration t:

t+1

witt = w! — ng’ where g' € 0¢;(w?)

witl — wh+nyixt yi(wh-xt) <1
wt otherwise



SGD vs. Perceptron

e SGD

witl — wh + m/txt yt(wt 'Xt) <1
wi otherwise
e Perceptron

witl — wh + nyixt yt(Wt 'Xt) <0
otherwise
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SGD = Perceptron
e Analysis of SGD assumes,
[Ve(w) <G [wf—w'[[<D
e Analysis of GD & SGD’s implies,
T T
S —ye(wh x)ly < D [ - ye(w - x)l + VTGD
t=1 t=1

e Analysis of Perecptron assumes,

Viclxill <1 3w™ flwil =1 A yi(w"-x;) >y

e Perceptron’s mistake bound is,

1 1
¥2 = Zﬂ[)/t(wt -x¢) < 0] < s
t=1



SGD = Perceptron
e Need to accommodate Perceptron’s assumptions,

Vil <1 3w :|w*[=1 A yi(w"-x;) >

Constraining (by projecting) ||wf|| < 1 imply

wx; < Jlwh fIxi]l < 1

Modify loss to be [y — y(w - x)]+

We start at w! = 0 & progress toward w* thus

lw" —w*[| <1

Since Vt : |[wt|| < 1A [x;]| <1 then

G<1 D<1

w
R



SGD = Perceptron

e “Ignore” rounds t such that 0 < y;(w? - x?) <7

e [oss bound becomes,

-
’Yz]l ye(w' - x¢) <0 Z[’Y Ye(w' - x¢)]+
t=1
T =0
——
< Z[’Y_yt(W*'xt)]+ + VT
t=1 >y

e |f we saw only mistake-prone examples = T = #mistakes

1

T <VT = TS?

e SGD updates wt on rounds when y;(w? - xt) is small and is thus
called the aggressive Perceptron



Logistic Regression

e Define the following estimate,

def 1

PIY =+l w] = 1+ exp(—w - x)

e \We can write,

1
PIY =—lxw]=1- 1+ exp(—w - x)
_ 1
1+ exp(w-x)

e Putting the two outcomes together we get,

def 1
Py =ylxwl =1 exp(—y(w - x))




Logistic Regression

e |oss of wrong prediction,
—log (P[Y = —yjlw, x;]) = — log (1 - ey’(""'x"))

e SGD iterate for sub-sample S’

1
T 1+ exp(yi(wh-xp))
9’ =— Z PiyiX;
ies’
wit™l = wi — ,r’tgt = wt + ,r’t Z Di Vi X;
ies’

V/GS/: Pi



