COS324: Introduction to Machine Learning Lecture 10: Gradient Methods in Machine Learning

Prof. Elad Hazan & Prof. Yoram Singer

Recap & Today

- Reminder of convexity, GD, and SGD
- Linear regression
 - 1. Problem definition
 - 2. Direct solution
 - 3. SGD for linear regression
- Binary classification
 - 1. Surrogate losses
 - 2. Sub-gradients
 - 3. Perceptron revisited
 - 4. SGD for binary classification
- Beyond binary learning problems

Convex Sets

 Ω is convex set: \forall \mathbf{u} , $\mathbf{v} \in \Omega$, line segment between \mathbf{u} and \mathbf{v} is in Ω

$$\forall \alpha \in [0,1] \ \alpha \mathbf{u} + (1-\alpha)\mathbf{v} \in \Omega$$

Convex Functions

Function $f: \Omega \to \mathbb{R}$ is convex if $\forall \mathbf{u}, \mathbf{v} \in C$ and $\alpha \in [0, 1]$,

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \leq \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v})$$

Tangents Lie Below f

Gradient of
$$f$$
 at \mathbf{w} : $\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$

If f is convex and differentiable, then

$$\forall \mathbf{u}, f(\mathbf{u}) \ge f(\mathbf{w}) + \nabla f(\mathbf{w}) \cdot (\mathbf{u} - \mathbf{w})$$

Convex Optimization & Learning

Convex optimization,

$$\min_{\mathbf{w} \in \Omega} f(\mathbf{w})$$

where f is a convex function and Ω is a convex set

C.O. for Machine learning,

$$f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))$$

where $\ell()$ is a convex loss function in **w** and assume $\Omega = \mathbb{R}^d$

Often abbreviate
$$f_i(\mathbf{w}) \stackrel{\text{def}}{=} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))$$
 or $\ell_i(\mathbf{w}) \stackrel{\text{def}}{=} \ell(\mathbf{w}, (\mathbf{x}_i, y_i))$

Gradient Descent

- Initialize \mathbf{w}^1 (typically $\mathbf{w}^1 = \mathbf{0}$)
- For t = 1, ..., T:
 - Set learning-rate η^t (often fixed)
 - Perform gradient descent step:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta^t \nabla f(\mathbf{w}^t)$$
$$= \mathbf{w}^t - \eta^t \frac{1}{|S|} \sum_{i \in S} \nabla f_i(\mathbf{w}^t)$$

• Output $\bar{\mathbf{w}}^T = \frac{1}{T} \sum_{t=1}^t \mathbf{w}^t$

Gradient Descent - Properties

• Assume or constrain $\|\mathbf{w}\| \le D/2$ therefore

$$\Rightarrow \|\mathbf{w}^t - \mathbf{w}^*\| \leq \|\mathbf{w}^t\| + \|\mathbf{w}^*\| \leq D$$

- Assume $\|\nabla f(\mathbf{w}^t)\| \leq G$
- Convergence rate of GD:

$$f(\bar{\mathbf{w}}^T) - f(\mathbf{w}^*) \le \frac{DG}{\sqrt{T}}$$

• However, each iteration requires O(dm) operations [d-dimension, m-number of examples]

Iterates of Gradient Descent

Stochastic Gradient Descent

- Initialize \mathbf{w}^1 (typically $\mathbf{w}^1 = \mathbf{0}$)
- For t = 1, ..., T:
 - Set learning-rate η^t (typically decreasing)
 - Perform stochastic gradient descent step:
 - Choose $S' \subset S$ at random
 - Update

$$egin{aligned} \mathbf{w}^{t+1} &= \mathbf{w}^t - \eta^t
abla \hat{f}(\mathbf{w}^t) \ &= \mathbf{w}^t - \eta^t rac{1}{|\mathcal{S}'|} \sum_{i \in \mathcal{S}'}
abla f_i(\mathbf{w}^t) \end{aligned}$$

• Output
$$\bar{\mathbf{w}}^T = \frac{1}{T} \sum_{t=1}^t \mathbf{w}^t$$

Stochastic Gradient Descent - Properties

Assume that

$$\forall i: \ \|\nabla f_i(\mathbf{w}^t)\| \leq G$$
 in contrast to GD, $\|\nabla f(\mathbf{w}^t)\| \leq G$

Convergence rate of GD:

$$\mathbb{E}\big[f(\bar{\mathbf{w}}^T)\big] - f(\mathbf{w}^*) \le \frac{DG}{\sqrt{T}}$$

• Each iteration requires O(dc) operations, c is sub-sample size

Iterates of SGD

- * $f(w^t)$ $f(\frac{1}{t}\sum_{s\leq t} w^s)$

Regression Problems

- Automatic Kelly Blue Book: value assessment of used cars
- Collect sale information of cars: sold for \$\$
- For each car gather model year, # accidents, make, mileage # of previous owners, last sold for \$\$\$, ...

Year	Acci	Make	Mile	Ownr	Las\$	Cur\$	
97	5	То	120	3	2.5	0.5	
16	1	Te	17	0	80	60	
12	0	Su	43	1	29	22	
<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	<i>x</i> ₆	У	

- How to represent symbolic features (Toyota, Tesla, Subaru)?
- How to represent ordered sets (#accidents: 0 < 1 < 2 < ...) ?
- How to represent numeric features (v\$, $\log(v\$)$, $\log(v\$) b$) ?

Linear Regression

- Each row is an example $\mathbf{x}_i \in \mathbb{R}^d$
- Last column is a target $y_i \in \mathbb{R}$
- Create $m \times d$ matrix s.t. $X_{i,j}$ is j'th entry of \mathbf{x}_i
- Create column vector \mathbf{y} from y_1, \ldots, y_n
- Find a solution for the linear set of equations X**w** = **y**
 - Solution may not exist
 - Multiple solutions may exist
 - Complexity $O(md + d^3)$
- Approximately solve, X**w** \approx **y** namely $\forall i$: $\mathbf{w} \cdot \mathbf{x}_i \approx y_i$
- Notion of ≈?

Regression Losses

- Convex loss $\ell : \mathbb{R} \to \mathbb{R}_+$; $\ell(z) = \ell(\mathbf{w} \cdot \mathbf{x} y)$
- Example *i* induces convex loss

$$\ell_i(\mathbf{w}) = \ell(\mathbf{w} \cdot \mathbf{x}_i - y_i)$$

• Total loss:

$$f(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w} \cdot \mathbf{x}_i - y_i)$$

• Concrete losses $\ell(z) = \dots$

$$z^2 |z| z^4 \dots \min\{|z| - \gamma, 0\} \exp(z) + \exp(-z)$$

Least Squares Regression $\ell(z) = \frac{1}{2}z^2$

- Parameters: radius D, learning rate η , number of iterations T
- Initialize: $\mathbf{w}^1 = \mathbf{0}$
- For t = 1, ..., T:
 - Choose $S' \subset S$ and calculate stochastic gradient

$$\nabla \hat{f}(\mathbf{w}^t) = \frac{1}{S'} \sum_{i \in S'} \underbrace{(\mathbf{w}^t \cdot \mathbf{x}_i - y_i)}_{\stackrel{\text{def}}{=} \Delta_i} \mathbf{x}_i$$

Update

$$\begin{aligned} \mathbf{w}^{t+\frac{1}{2}} &= \mathbf{w}^t - \eta^t \nabla \hat{f}(\mathbf{w}^t) \\ \mathbf{w}^{t+1} &= \min \left\{ 1, \frac{D}{\|\mathbf{w}^{t+\frac{1}{2}}\|} \right\} \mathbf{w}^{t+\frac{1}{2}} \end{aligned}$$

• Output $\bar{\mathbf{w}}^T = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^t$

Pesky Learning Rate

• Recall that $\eta = \frac{D}{G\sqrt{T}}$ where

$$\|\nabla f(\mathbf{w}^t)\| \le G \qquad \|\mathbf{w}^t - \mathbf{w}^\star\| \le D$$

- Assume or normalize such that $\forall i : \|\mathbf{x}_i\| \le b \|y_i\| \le c$
- Constrain $\forall t : \|\mathbf{w}^t\| \leq D/2$
- We thus get: $\|\mathbf{w}^t \mathbf{w}^*\| \le \|\mathbf{w}^t\| + \|\mathbf{w}^*\| \le D$
- In addition, we get a bound on gradients,

$$\begin{aligned} \|(\mathbf{w} \cdot \mathbf{x}_i - y_i)\mathbf{x}_i\| &\leq |\mathbf{w} \cdot \mathbf{x}_i - y_i| \|\mathbf{x}_i\| \\ &\leq |\mathbf{w} \cdot \mathbf{x}_i - y_i| b \\ &\leq (|\mathbf{w} \cdot \mathbf{x}_i| + |y_i|) b \\ &\leq (Db + c)b \end{aligned}$$
 [Cauchy-Schwarz]

• And we can set $\eta = \frac{D}{(Db+c)b\sqrt{T}}$... but in practice ...

Binary Classification

- Examples $\mathbf{x}_i \in \mathbb{R}^d$
- Labels $y_i \in \{-1, +1\}$
- Predictor / classifier: $h_w(\mathbf{x}) = \text{sign}(\mathbf{w} \cdot \mathbf{x} b)$
- b is called a bias term (assume it is zero for time being)
- Goal,

$$\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_i) \neq y_i]$$

- First attempt: define $z = y(\mathbf{w} \cdot \mathbf{x})$ and $\ell^{0-1}(z) = \mathbb{1}[z \le 0]$
- Can we use (stochastic) gradient descent ?

Linear Classifiers

- Domain: Euclidean space $\mathbf{x} \in \mathcal{X} = \mathbb{R}^d$
- Hypothesis class: thresholding linear predictors

$$h_{\mathsf{w}}(x) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} - b\right)$$

0-1 Loss

"Utopia": combinatorial problem which is NP-Hard

Classification Margin

Surrogate Losses for Classification

• Convex losses w.r.t $z = y(\mathbf{w} \cdot \mathbf{x})$ which satisfy

$$\ell(z) \ge \ell^{0-1}(z)$$

Exp-loss,

$$\exp(-z)$$

• Log-loss,

$$\log\left(1+\exp(-z)\right)$$

• Hinge-loss,

$$\max \{0, 1-z\} = [1-z]_+$$

• Squared-error with $\Delta = \mathbf{w} \cdot \mathbf{x} - y$,

$$\ell(\Delta) = \Delta^2 = (\mathbf{w} \cdot \mathbf{x} - y)^2$$

$$= y^2 (\mathbf{w} \cdot \mathbf{x} - y)^2$$

$$= (y(\mathbf{w} \cdot \mathbf{x}) - 1)^2 \implies \ell(z) = (1 - z)^2$$

Sub-gradients

- \mathbf{v} is sub-gradient of f at \mathbf{w} if $\forall \mathbf{u}$, $f(\mathbf{u}) \geq f(\mathbf{w}) + \mathbf{v} \cdot (\mathbf{u} \mathbf{w})$
- The differential set, $\partial f(\mathbf{w})$, is the set of sub-gradients of f at \mathbf{w}
- Lemma: f is convex iff for every \mathbf{w} , $\partial f(\mathbf{w}) \neq \emptyset$

Optimality Property

We can replace gradients with sub-gradients:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \mathbf{g}^t$$
 where $\mathbf{g}^t \in \partial \hat{f}(\mathbf{w}^t)$

Hinge Loss

$$\begin{split} &\ell(z) = \max\{0, 1 - z\} = [1 - z]_{+} \\ &\ell^{\text{hinge}}(\mathbf{w}, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \max\{0, 1 - y(\mathbf{w} \cdot \mathbf{x})\} \end{split}$$

Non-differentiable at z = 1

Can we use SGD ?

SGD for Hinge-Loss

- Fully stochastic case single example
- Subgardient of $[1-z]_+$,

$$\partial \ell(z) = \begin{cases} 0 & z > 1 \\ -1 & z < 1 \\ (-1,0) & z = 1 \end{cases}$$
$$\partial \ell(\mathbf{w}, (\mathbf{x}, y)) = y\mathbf{x}\partial \ell(z) \text{ where } z = y(\mathbf{w} \cdot \mathbf{x})$$

• SGD update on iteration t:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \mathbf{g}^t$$
 where $\mathbf{g}^t \in \partial \ell_t(\mathbf{w}^t)$

$$\mathbf{w}^{t+1} = \left\{ \begin{array}{ll} \mathbf{w}^t + \eta y^t \mathbf{x}^t & y^t (\mathbf{w}^t \cdot \mathbf{x}^t) \le 1 \\ \mathbf{w}^t & \text{otherwise} \end{array} \right.$$

SGD vs. Perceptron

SGD

$$\mathbf{w}^{t+1} = \left\{ \begin{array}{ll} \mathbf{w}^t + \eta y^t \mathbf{x}^t & y^t (\mathbf{w}^t \cdot \mathbf{x}^t) \leq \mathbf{1} \\ \mathbf{w}^t & \text{otherwise} \end{array} \right.$$

Perceptron

$$\mathbf{w}^{t+1} = \begin{cases} \mathbf{w}^t + \eta y^t \mathbf{x}^t & y^t (\mathbf{w}^t \cdot \mathbf{x}^t) \leq \mathbf{0} \\ \mathbf{w}^t & \text{otherwise} \end{cases}$$

SGD ≈ Perceptron

Analysis of SGD assumes,

$$\|\nabla \ell_t(\mathbf{w}^t)\| \le G \qquad \|\mathbf{w}^t - \mathbf{w}^\star\| \le D$$

Analysis of GD & SGD's implies,

$$\sum_{t=1}^{T} [1 - y_t(\mathbf{w}^t \cdot \mathbf{x}_t)]_+ \leq \sum_{t=1}^{T} [1 - y_t(\mathbf{w}^* \cdot \mathbf{x}_t)]_+ + \sqrt{T}GD$$

Analysis of Perecptron assumes,

$$\forall i: \|\mathbf{x}_i\| \leq 1 \ \exists \mathbf{w}^{\star}: \|\mathbf{w}^{\star}\| = 1 \ \land \ y_i(\mathbf{w}^{\star} \cdot \mathbf{x}_i) \geq \gamma$$

Perceptron's mistake bound is,

$$\frac{1}{\gamma^2} \Rightarrow \sum_{t=1}^{I} \mathbb{1} \left[y_t(\mathbf{w}^t \cdot \mathbf{x}_t) \le 0 \right] \le \frac{1}{\gamma^2}$$

SGD ⇒ Perceptron

Need to accommodate Perceptron's assumptions,

$$\forall i : \|\mathbf{x}_i\| \leq 1 \ \exists \mathbf{w}^* : \|\mathbf{w}^*\| = 1 \ \land \ y_i(\mathbf{w}^* \cdot \mathbf{x}_i) \geq \gamma$$

• Constraining (by projecting) $\|\mathbf{w}^t\| \leq 1$ imply

$$\mathbf{w}^t \cdot \mathbf{x}_i \leq \|\mathbf{w}^t\| \|\mathbf{x}_i\| \leq 1$$

- Modify loss to be $[\gamma y(\mathbf{w} \cdot \mathbf{x})]_+$
- We start at $\mathbf{w}^1 = \mathbf{0}$ & progress toward \mathbf{w}^* thus

$$\|\mathbf{w}^t - \mathbf{w}^\star\| \le 1$$

• Since $\forall t : \|\mathbf{w}^t\| \le 1 \land \|\mathbf{x}_i\| \le 1$ then

SGD ⇒ Perceptron

- "Ignore" rounds t such that $0 < y_t(\mathbf{w}^t \cdot \mathbf{x}^t) \le \gamma$
- Loss bound becomes,

$$\gamma \sum_{t=1}^{T} \mathbb{1} \left[y_t(\mathbf{w}^t \cdot \mathbf{x}_t) \le 0 \right] \le \sum_{t=1}^{T} [\gamma - y_t(\mathbf{w}^t \cdot \mathbf{x}_t)]_+$$

$$\le \sum_{t=1}^{T} [\gamma - \underbrace{y_t(\mathbf{w}^t \cdot \mathbf{x}_t)}_{\ge \gamma}]_+ + \sqrt{T}$$

• If we saw only mistake-prone examples $\Rightarrow T = \#$ mistakes

$$\gamma T \le \sqrt{T} \quad \Rightarrow \quad T \le \frac{1}{\gamma^2}$$

• SGD updates \mathbf{w}^t on rounds when $y_t(\mathbf{w}^t \cdot \mathbf{x}^t)$ is small and is thus called the *aggressive* Perceptron

Logistic Regression

Define the following estimate,

$$\mathbb{P}\left[Y = +1|\mathbf{x}, \mathbf{w}\right] \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

• We can write,

$$\mathbb{P}\left[Y = -1|\mathbf{x}, \mathbf{w}\right] = 1 - \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$
$$= \frac{1}{1 + \exp(\mathbf{w} \cdot \mathbf{x})}$$

Putting the two outcomes together we get,

$$\mathbb{P}\left[Y = y | \mathbf{x}, \mathbf{w}\right] \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-y(\mathbf{w} \cdot \mathbf{x}))}$$

Logistic Regression

· Loss of wrong prediction,

$$-\log\left(\mathbb{P}\left[Y=-y_i|\mathbf{w},\mathbf{x}_i\right]\right)=-\log\left(1+e^{-y_i(\mathbf{w}\cdot\mathbf{x}_i)}\right)$$

SGD iterate for sub-sample S'

$$\forall i \in S': \quad p_i = \frac{1}{1 + \exp(y_i(\mathbf{w}^t \cdot \mathbf{x}_i))}$$

$$\mathbf{g}^t = -\sum_{i \in S'} p_i y_i \mathbf{x}_i$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta^t \mathbf{g}^t = \mathbf{w}^t + \eta^t \sum_{i \in S'} p_i y_i \mathbf{x}_i$$