COS324: Introduction to Machine Learning Lecture 10½: Generalization Revisited

Prof. Elad Hazan & Prof. Yoram Singer

• Unknown distribution $\mathcal D$ over $\mathcal X imes \mathcal Y$

- Unknown distribution $\mathcal D$ over $\mathcal X imes \mathcal Y$
- $\bullet \ \, \mathsf{Assume} \,\, \mathcal{Y} = \{-1, +1\} \quad [\mathsf{binary} \,\, \mathsf{classification}]$

- Unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- Assume $\mathcal{Y} = \{-1, +1\}$ [binary classification]
- Probability label is +1 (-1 respectively)

$$\mathbb{P}\left[Y = +1|\mathbf{x}\right] = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x})} = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x}, -1) + \mathcal{D}(\mathbf{x}, +1)}$$

- Unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- Assume $\mathcal{Y} = \{-1, +1\}$ [binary classification]
- Probability label is +1 (-1 respectively)

$$\mathbb{P}\left[Y = +1 | \mathbf{x}\right] = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x})} = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x}, -1) + \mathcal{D}(\mathbf{x}, +1)}$$

• Given $\mathbf{x} \in \mathcal{X}$ we define a predictor

$$f^*(x) = \operatorname{sign}\left(\mathbb{P}\left[Y = +1|\mathbf{x}\right] - \frac{1}{2}\right)$$

- Unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- Assume $\mathcal{Y} = \{-1, +1\}$ [binary classification]
- Probability label is +1 (-1 respectively)

$$\mathbb{P}\left[Y = +1 | \mathbf{x}\right] = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x})} = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x}, -1) + \mathcal{D}(\mathbf{x}, +1)}$$

• Given $\mathbf{x} \in \mathcal{X}$ we define a predictor

$$f^*(x) = \operatorname{sign}\left(\mathbb{P}\left[Y = +1|\mathbf{x}\right] - \frac{1}{2}\right)$$

• f^{\star} is a minimizer of $\mathcal{L}^{0-1}_{\mathcal{D}}$ (may not be efficiently computable)

- Unknown distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$
- Assume $\mathcal{Y} = \{-1, +1\}$ [binary classification]
- Probability label is +1 (-1 respectively)

$$\mathbb{P}\left[Y = +1 | \mathbf{x}\right] = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x})} = \frac{\mathcal{D}(\mathbf{x}, +1)}{\mathcal{D}(\mathbf{x}, -1) + \mathcal{D}(\mathbf{x}, +1)}$$

• Given $\mathbf{x} \in \mathcal{X}$ we define a predictor

$$f^*(x) = \operatorname{sign}\left(\mathbb{P}\left[Y = +1|\mathbf{x}\right] - \frac{1}{2}\right)$$

- f^{\star} is a minimizer of $\mathcal{L}^{0-1}_{\mathcal{D}}$ (may not be efficiently computable)
- How "far" is a learned classifier from f^* ?

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

• Gap between the learned and optimal predictors

$$\mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) = ?$$

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

Gap between the learned and optimal predictors

$$\mathcal{L}^{0-1}_{\mathcal{D}}(\mathcal{A}(S)) - \mathcal{L}^{0-1}_{\mathcal{D}}(f^{\star}) = ?$$

Let us define the following

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

Gap between the learned and optimal predictors

$$\mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{*}) = ?$$

- Let us define the following
 - (Hypothetical) Best in hypothesis class w.r.t \mathcal{D} & 0-1 loss

$$h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D^{0-1}(h)$$

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

Gap between the learned and optimal predictors

$$\mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) = ?$$

- Let us define the following
 - (Hypothetical) Best in hypothesis class w.r.t \mathcal{D} & 0-1 loss

$$h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D^{0-1}(h)$$

• Best in hypothesis class w.r.t S & 0-1 loss

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{S}^{0-1}(h)$$

$$\mathcal{A}(S) = \arg \widehat{\min}_{h \in \mathcal{H}} \mathcal{L}_{S}^{\ell}(h)$$

Gap between the learned and optimal predictors

$$\mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) = ?$$

- Let us define the following
 - (Hypothetical) Best in hypothesis class w.r.t \mathcal{D} & 0-1 loss

$$h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D^{0-1}(h)$$

• Best in hypothesis class w.r.t S & 0-1 loss

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \ \mathcal{L}_{S}^{0-1}(h)$$

• Solution found by learning algorithm using ℓ

$$\hat{\hat{h}} \stackrel{\text{def}}{=} \mathcal{A}(S)$$

Error Decomposition

 $m{\cdot}$ $arepsilon_{\mathsf{app}}$ approximation error w.r.t to hypothesis class $\mathcal H$

$$arepsilon_{\mathsf{app}} \stackrel{\mathsf{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{h}^{\star}) - \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{f}^{\star})$$

Error Decomposition

 $m{\cdot}$ $arepsilon_{\mathsf{app}}$ approximation error w.r.t to hypothesis class $\mathcal H$

$$arepsilon_{\mathsf{app}} \stackrel{\scriptscriptstyle\mathsf{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{h}^{\star}) - \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{f}^{\star})$$

• $\varepsilon_{\rm est}$ estimation error due to finite sample S

$$arepsilon_{ ext{est}} \stackrel{ ext{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h}) - \mathcal{L}^{0-1}_{\mathcal{D}}(h^{\star})$$

Error Decomposition

 $m{\cdot}$ $arepsilon_{\mathsf{app}}$ approximation error w.r.t to hypothesis class $\mathcal H$

$$arepsilon_{\mathsf{app}} \stackrel{\scriptscriptstyle\mathsf{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{h}^{\star}) - \mathcal{L}^{0-1}_{\mathcal{D}}(\mathit{f}^{\star})$$

• $\varepsilon_{\rm est}$ estimation error due to finite sample S

$$arepsilon_{ ext{est}} \stackrel{ ext{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h}) - \mathcal{L}^{0-1}_{\mathcal{D}}(h^{\star})$$

• $\varepsilon_{\rm opt}$ optimization error

$$arepsilon_{ ext{opt}} \stackrel{ ext{def}}{=} \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{\hat{h}}) - \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h})$$

(surrogate loss ℓ , stochastic gradients, finite #iterations)

$$\begin{split} \mathcal{L}^{0-1}_{\mathcal{D}}(\mathcal{A}(S)) - \mathcal{L}^{0-1}_{\mathcal{D}}(f^{\star}) &\leq \\ \varepsilon_{\text{opt}} &\Rightarrow \left| \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h}) - \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h}) \right| + \\ \varepsilon_{\text{est}} &\Rightarrow \left| \mathcal{L}^{0-1}_{\mathcal{D}}(\hat{h}) - \mathcal{L}^{0-1}_{\mathcal{D}}(h^{\star}) \right| + \\ \varepsilon_{\text{app}} &\Rightarrow \left| \mathcal{L}^{0-1}_{\mathcal{D}}(h^{\star}) - \mathcal{L}^{0-1}_{\mathcal{D}}(f^{\star}) \right| \end{split}$$

$$\begin{split} \mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) &\leq \\ \varepsilon_{\text{opt}} & \Rightarrow & \left| \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) - \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) \right| + \\ \varepsilon_{\text{est}} & \Rightarrow & \left| \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) - \mathcal{L}_{\mathcal{D}}^{0-1}(h^{\star}) \right| + \\ \varepsilon_{\text{app}} & \Rightarrow & \left| \mathcal{L}_{\mathcal{D}}^{0-1}(h^{\star}) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) \right| \end{split}$$

ullet PAC Learning focuses on $arepsilon_{ ext{est}}$ & complexity of ${\cal H}$

$$\mathcal{L}_{\mathcal{D}}^{0-1}(\mathcal{A}(S)) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) \leq$$

$$\varepsilon_{\mathsf{opt}} \quad \Rightarrow \quad \left| \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) - \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) \right| +$$

$$\varepsilon_{\mathsf{est}} \quad \Rightarrow \quad \left| \mathcal{L}_{\mathcal{D}}^{0-1}(\hat{h}) - \mathcal{L}_{\mathcal{D}}^{0-1}(h^{\star}) \right| +$$

$$\varepsilon_{\mathsf{app}} \quad \Rightarrow \quad \left| \mathcal{L}_{\mathcal{D}}^{0-1}(h^{\star}) - \mathcal{L}_{\mathcal{D}}^{0-1}(f^{\star}) \right|$$

- ullet PAC Learning focuses on $arepsilon_{
 m est}$ & complexity of ${\cal H}$
- Stochastic optimization focuses on $arepsilon_{ ext{opt}}$ & convexity of ${\mathcal H}$