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Optimal Predictor

• Unknown distribution D over X × Y

• Assume Y = {−1,+1} [binary classification]

• Probability label is +1 (−1 respectively)

P [Y = +1|x] =
D(x,+1)
D(x) =

D(x,+1)
D(x,−1) +D(x,+1)

• Given x ∈ X we define a predictor

f ?(x) = sign
(
P [Y = +1|x]−

1

2

)
• f ? is a minimizer of L0−1D (may not be efficiently computable)

• How “far” is a learned classifier from f ??
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• Algorithm A, surrogate loss `(·), sample S, learned predictor

A(S) = arg m̂inh∈H L`S(h)

• Gap between the learned and optimal predictors

L0−1D (A(S))− L0−1D (f ?) = ?

• Let us define the following

• (Hypothetical) Best in hypothesis class w.r.t D & 0-1 loss

h? = argmin
h∈H
L0−1D (h)

• Best in hypothesis class w.r.t S & 0-1 loss

ĥ = argmin
h∈H
L0−1S (h)

• Solution found by learning algorithm using `
ˆ̂h

def
= A(S)
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Error Decomposition

• εapp approximation error w.r.t to hypothesis class H

εapp
def
= L0−1D (h?)− L0−1D (f ?)

• εest estimation error due to finite sample S

εest
def
= L0−1D (ĥ)− L0−1D (h?)

• εopt optimization error

εopt
def
= L0−1D (ˆ̂h)− L0−1D (ĥ)

(surrogate loss `, stochastic gradients, finite #iterations)
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Generalization Revisited

L0−1D (A(S))− L0−1D (f ?) ≤

εopt ⇒
∣∣∣L0−1D (ˆ̂h)− L0−1D (ĥ)

∣∣∣ +
εest ⇒

∣∣L0−1D (ĥ)− L0−1D (h?)
∣∣ +

εapp ⇒
∣∣L0−1D (h?)− L0−1D (f ?)

∣∣

• PAC Learning focuses on εest & complexity of H

• Stochastic optimization focuses on εopt & convexity of H
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