
Part 1: PCA & MDS 

COS 323 



Dimensionality Reduction 

• Map points in high-dimensional space to 
lower number of dimensions 

• Preserve structure: pairwise distances, etc. 

• Useful for further processing: 
– Less computation, fewer parameters 

– Easier to understand, visualize 



SVD for rank-k approximation 

• A is m×n matrix of rank > k 

• Suppose you want to find best rank-k 
approximation to A 

• Take SVD: A = UWVT 

• Set all but the largest k singular values of W to 
zero 

• Can form compact representation by eliminating 
columns of U and V corresponding to zeroed wi 



Principal Components Analysis (PCA) 

• Approximating a high-dimensional data set 
with a lower-dimensional linear subspace 

• Also converts possibly-correlated attributes into 
uncorrelated attributes 
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SVD and PCA 

• Data matrix with points/examples as rows 

• Center data by subtracting mean (“whitening”) 

• Compute SVD 

• Columns of Vk are principal components 

• Value of wi gives importance of each 
component 



PCA on Faces: “Eigenfaces” 

Average 
face 

First principal component 

Other 
components 

For all except average, 
“gray” = 0, 

“white” > 0, 
“black” < 0 



Uses of PCA 

• Compression: each new image can be 
approximated by projection onto first few 
principal components 

• Recognition: for a new image, project onto first 
few principal components, match feature vectors 

• Generation: Adjust contributions of a few 
principal components to generate new plausible 
data points 



PCA for Relighting 

• Images under different illumination 

[Matusik & McMillan] 



PCA for Relighting 

• Images under different illumination 

• Most variation captured 
by first 5 principal 
components – can 
re-illuminate by 
combining only 
a few images 

[Matusik & McMillan] 



PCA for DNA Microarrays 

• Measure gene activation under different conditions 

[Troyanskaya] 



PCA for DNA Microarrays 

• Measure gene activation under different conditions 

[Troyanskaya] 



PCA for DNA Microarrays 

• PCA shows patterns of correlated activation 
– Genes with same pattern might have similar function 

[Wall et al.] 



PCA for DNA Microarrays 

• PCA shows patterns of correlated activation 
– Genes with same pattern might have similar function 

[Wall et al.] 



 



Practical Considerations for PCA 

• Sensitive to scale of each attribute (column) 
– In practice, may scale each attribute to have unit 

variance 

• Sensitive to noisy attributes 
– Just because a dimension is highly weighted by PCA 

doesn’t mean it’s relevant, informative, etc. 
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Multidimensional Scaling 



Multidimensional Scaling 

• In some experiments, can only measure 
similarity or dissimilarity 
– e.g., is response to stimuli similar or different? 

– Frequent in psychophysical experiments, 
preference surveys, etc. 

• Want to recover absolute positions in 
k-dimensional space 



Multidimensional Scaling 

• Example: given pairwise distances between cities 

 

 

 

 
 

 
– Want to recover locations 

[Pellacini et al.] 



Euclidean MDS 

• Formally, let’s say we have n × n matrix D 
consisting of squared distances dij = (xi – xj)2 

• Want to recover n × k matrix X of positions 
in k-dimensional space 

















=





















−−

−−

−−

=









)(

)(

0)()(

)(0)(

)()(0

2

1

2
32

2
31

2
32

2
21

2
31

2
21

x

x

X

xxxx

xxxx

xxxx

D



Euclidean MDS 

• Observe that 

 

• Strategy: convert matrix D of dij
2 into 

matrix B of xixj 
– “Centered” distance matrix 

– B = XXT 
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Euclidean MDS 

• Centering: 
– Sum of row i of D = sum of column i of D = 

 

 

 

– Sum of all entries in D = 
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Euclidean MDS 

• Choose Σxi = 0 
– Solution will have average position at origin 

 
– Then, 

 

• So, to get B: 
– compute row (or column) sums 
– compute sum of sums 
– apply above formula to each entry of D 
– Divide by –2 

∑∑ =+=
j

j
j

jii xnsxnxs 222 2,

jinjninij xxsssd 22
1112 −=+−−



Factoring B = XXT using SVD 

• Now have B, want to factor into XXT 

• If X is n × k, B must have rank k 

• Take SVD, set all but top k singular values to 0 
– Eliminate corresponding columns of U and V 

– Have B’=U’W’V’T 

– B’ is square and symmetric, so U’ = V’ 

– Take X = U’ times square root of W’ 



Multidimensional Scaling 

• Result (k = 2): 

[Pellacini et al.] 



Another application 

From  Young 1985 / Jacobowitz 1973  



Perceptual Mapping for Marketing 



Multidimensional Scaling 

• Caveat: actual axes, center not necessarily 
what you want (can’t recover them!) 

• This is “classical” or “Euclidean” MDS  [Torgerson 52] 

– Distance matrix assumed to be actual Euclidean distance 

• More sophisticated versions available 
– “Non-metric MDS”: not Euclidean distance, 

sometimes just inequalities 

– Replicated MDS: for multiple data sources (e.g. people) 

– “Weighted MDS”: account for observer bias 
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