Part 1: PCA \& MDS

COS 323

Dimensionality Reduction

- Map points in high-dimensional space to lower number of dimensions
- Preserve structure: pairwise distances, etc.
- Useful for further processing:
- Less computation, fewer parameters
- Easier to understand, visualize

SVD for rank-k approximation

- A is $m \times n$ matrix of rank $>k$
- Suppose you want to find best rank-k approximation to \mathbf{A}
- Take SVD: $\mathbf{A}=\mathbf{U W V}^{\top}$
- Set all but the largest k singular values of \mathbf{W} to zero
- Can form compact representation by eliminating columns of \mathbf{U} and \mathbf{V} corresponding to zeroed w_{i}

Principal Components Analysis (PCA)

- Approximating a high-dimensional data set with a lower-dimensional linear subspace
- Also converts possibly-correlated attributes into uncorrelated attributes

Second principal component

First principal component

Original axes

SVD and PCA

- Data matrix with points/examples as rows
- Center data by subtracting mean ("whitening")
- Compute SVD
- Columns of \mathbf{V}_{k} are principal components
- Value of w_{i} gives importance of each component

PCA on Faces: "Eigenfaces"

Uses of PCA

- Compression: each new image can be approximated by projection onto first few principal components
- Recognition: for a new image, project onto first few principal components, match feature vectors
- Generation: Adjust contributions of a few principal components to generate new plausible data points

PCA for Relighting

- Images under different illumination

[Matusik \& McMillan]

PCA for Relighting

- Images under different illumination
- Most variation captured by first 5 principal components - can re-illuminate by combining only a few images

PCA for DNA Microarrays

- Measure gene activation under different conditions

PCA for DNA Microarrays

- Measure gene activation under different conditions

PCA for DNA Microarrays

- PCA shows patterns of correlated activation
- Genes with same pattern might have similar function

PCA for DNA Microarrays

- PCA shows patterns of correlated activation
- Genes with same pattern might have similar function

Music Map

- ambient e blues \& classical electronica = folk * jazz - other p pop i rap 4 rock world

Practical Considerations for PCA

- Sensitive to scale of each attribute (column)
- In practice, may scale each attribute to have unit variance
- Sensitive to noisy attributes
- Just because a dimension is highly weighted by PCA doesn't mean it's relevant, informative, etc.

Multidimensional Scaling

Multidimensional Scaling

- In some experiments, can only measure similarity or dissimilarity
- e.g., is response to stimuli similar or different?
- Frequent in psychophysical experiments, preference surveys, etc.
- Want to recover absolute positions in k-dimensional space

Multidimensional Scaling

- Example: given pairwise distances between cities

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	DC
Atlanta	0									
Chicago	587	0								
Denver	1212	920	0							
Houston	701	940	879	0						
LA	1936	1745	831	1374	0					
Miami	604	1188	1726	968	2339	0				
NYC	748	713	1631	1420	2451	1092	0			
SF	2139	1858	949	1645	347	2594	2571	0		
Seattle	2182	1737	1021	1891	959	2734	2406	678		0
DC	543	597	1494	1220	2300	923	205	2442	2329	0

- Want to recover locations
[Pellacini et al.]

Euclidean MDS

- Formally, let's say we have $n \times n$ matrix D consisting of squared distances $d_{i j}=\left(x_{i}-x_{j}\right)^{2}$
- Want to recover $n \times k$ matrix X of positions in k-dimensional space

$$
\begin{gathered}
D=\left(\begin{array}{ccc}
0 & \left(x_{1}-x_{2}\right)^{2} & \left(x_{1}-x_{3}\right)^{2} \\
\left(x_{1}-x_{2}\right)^{2} & 0 & \left(x_{2}-x_{3}\right)^{2} \\
\left(x_{1}-x_{3}\right)^{2} & \left(x_{2}-x_{3}\right)^{2} & 0 \\
\\
X=\left(\begin{array}{c}
\left(\cdots x_{1} \cdots\right) \\
\left(\cdots x_{2} \cdots\right) \\
\vdots
\end{array}\right)
\end{array}\right) \\
\end{gathered}
$$

Euclidean MDS

- Observe that

$$
d_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}=x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}
$$

- Strategy: convert matrix D of $d_{i j}{ }^{2}$ into matrix B of $x_{i} x_{j}$
- "Centered" distance matrix
- $B=X X^{\top}$

Euclidean MDS

- Centering:
- Sum of row i of $D=$ sum of column i of $D=$

$$
\begin{aligned}
s_{i} & =\sum_{j} d_{i j}^{2}=\sum_{j} x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2} \\
& =n x_{i}^{2}-2 x_{i} \sum_{j} x_{j}+\sum_{j} x_{j}^{2}
\end{aligned}
$$

- Sum of all entries in $\mathrm{D}=$

$$
s=\sum_{i} s_{i}=2 n \sum_{i} x_{i}^{2}-2\left(\sum_{i} x_{i}\right)^{2}
$$

Euclidean MDS

- Choose $\Sigma \mathrm{x}_{\mathrm{i}}=0$
- Solution will have average position at origin
- Then,

$$
s_{i}=n x_{i}^{2}+\sum_{j} x_{j}^{2}, \quad s=2 n \sum_{j} x_{j}^{2}
$$

$$
d_{i j}^{2}-\frac{1}{n} s_{i}-\frac{1}{n} s_{j}+\frac{1}{n^{2}} s=-2 x_{i} x_{j}
$$

- So, to get B :
- compute row (or column) sums
- compute sum of sums
- apply above formula to each entry of D
- Divide by -2

Factoring $\mathrm{B}=\mathrm{XX}^{\mathrm{T}}$ using SVD

- Now have B, want to factor into $X X^{\top}$
- If X is $n \times k, B$ must have rank k
- Take SVD, set all but top k singular values to 0
- Eliminate corresponding columns of U and V
- Have $B^{\prime}=U^{\prime} W^{\prime} V^{\prime \top}$
$-B^{\prime}$ is square and symmetric, so $U^{\prime}=V^{\prime}$
- Take $X=U^{\prime}$ times square root of W^{\prime}

Multidimensional Scaling

- Result ($k=2$):

[Pellacini et al.]

Another application

Figure 2 (a) RMDS of children's similarity judgments about is body parts: (b) RMDS of adults' similarity judgments aboul is body parts.

From Young 1985 / Jacobowitz 1973

Perceptual Mapping for Marketing

Multidimensional Scaling

- Caveat: actual axes, center not necessarily what you want (can't recover them!)
- This is "classical" or "Euclidean" MDS [Torgerson 52]
- Distance matrix assumed to be actual Euclidean distance
- More sophisticated versions available
- "Non-metric MDS": not Euclidean distance, sometimes just inequalities
- Replicated MDS: for multiple data sources (e.g. people)
- "Weighted MDS": account for observer bias

