COS 429: COMPUTER VISON
 MULTI-VIEW GEOMETRY (1 lecture)

- Epipolar Geometry
- The Essential and Fundamental Matrices
- The 8-Point Algorithm
- Reading: Chapter 10

Reconstruction / Triangulation

(Binocular) Fusion

Epipolar Geometry

- Epipolar Plane
- Baseline
- Epipoles
- Epipolar Lines

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line l '.
- Potential matches for p ' have to lie on the corresponding epipolar line l.

Epipolar Constraint: Calibrated Case

Properties of the Essential Matrix

- E p’ is the epipolar line associated with p’.
- $E{ }^{T} p$ is the epipolar line associated with p.
- $E e^{\prime}=0$ and $E^{\mathrm{T}}=0$.
- E is singular.
- E has two equal non-zero singular values (Huang and Faugeras, 1989).

Epipolar Constraint: Small Motions
To First-Order:

$$
\mathcal{R}(\boldsymbol{a}, \theta)=e^{\theta\left[\boldsymbol{a}_{\times}\right]} \stackrel{\text { def }}{=} \sum_{i=0}^{+\infty} \frac{1}{i!}\left(\theta\left[\boldsymbol{a}_{\times}\right]\right)^{i} \square\left\{\begin{array}{l}
\boldsymbol{t}=\delta t \boldsymbol{v} \\
\mathcal{R}=\mathrm{Id}+\delta t\left[\boldsymbol{\omega}_{\times}\right] \\
\boldsymbol{p}^{\prime}=\boldsymbol{p}+\delta t \dot{\boldsymbol{p}}
\end{array}\right.
$$

$$
\boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0 \quad \text { with } \quad \mathcal{E}=\left[\boldsymbol{t}_{\times}\right] \mathcal{R} \quad \boldsymbol{p}^{T}\left[\boldsymbol{v}_{\times}\right]\left(\mathrm{Id}+\delta t\left[\boldsymbol{\omega}_{\times}\right]\right)(\boldsymbol{p}+\delta t \dot{\boldsymbol{p}})=0
$$

$$
\boldsymbol{p}^{T}\left(\left[\boldsymbol{v}_{\times}\right]\left[\boldsymbol{\omega}_{\times}\right]\right) \boldsymbol{p}-(\boldsymbol{p} \times \dot{\boldsymbol{p}}) \cdot \boldsymbol{v}=0
$$

Pure translation:
Focus of Expansion

Epipolar Constraint: Uncalibrated Case

$$
\boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}} \quad \square \boldsymbol{p}^{T} \mathcal{F} \boldsymbol{p}^{\prime}=0 \quad \text { with } \quad \mathcal{F}=\mathcal{K}^{-T} \mathcal{E} \mathcal{K}^{\prime-1}
$$

$$
\boldsymbol{p}^{\prime}=\mathcal{K}^{\prime} \hat{\boldsymbol{p}}^{\prime}
$$

Fundamental Matrix (Faugeras and Luong, 1992)

Properties of the Fundamental Matrix

- F p’ is the epipolar line associated with p’.
- $\mathrm{F}^{\mathrm{T}} \mathrm{p}$ is the epipolar line associated with p .
- $F e^{\prime}=0$ and $F^{\mathrm{T}}=0$.
- F is singular.

The Eight-Point Algorithm (Longuet-Higgins, 1981)

$$
\begin{aligned}
& (u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad \square\left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right)\left(\begin{array}{l}
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Minimize: } \\
& \sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{T} \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)^{2} \\
& \text { under the constraint } \\
& |F|^{2}=1 \text {. }
\end{aligned}
$$

Non-Linear Least-Squares Approach (Luong et al., 1993)

Minimize

$$
\sum_{i=1}^{n}\left[\mathrm{~d}^{2}\left(\boldsymbol{p}_{i}, \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)+\mathrm{d}^{2}\left(\boldsymbol{p}_{i}^{\prime}, \mathcal{F}^{T} \boldsymbol{p}_{i}\right)\right]
$$

with respect to the coefficients of F, using an appropriate rank-2 parameterization.

The Normalized Eight-Point Algorithm (Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels: $q_{\mathrm{i}}=T p_{\mathrm{i}}, \quad q_{\mathrm{i}}^{\prime}=T^{\prime} p_{\mathrm{i}}^{\prime}$.
- Use the eight-point algorithm to compute F from the points q_{i} and q_{i}^{\prime}.
- Enforce the rank-2 constraint.
- Output $T^{\mathrm{T}} \mathrm{F} T^{\prime}$.

Data courtesy of R. Mohr and B. Boufama.

Trinocular Epipolar Constraints

Trinocular Epipolar Constraints

$$
\left\{\begin{array}{lc}
\boldsymbol{p}_{1}^{T} \mathcal{E}_{12} \boldsymbol{p}_{2}=0 \\
\boldsymbol{p}_{2}^{T} \mathcal{E}_{23} \boldsymbol{p}_{3}=0 & \square \\
\boldsymbol{p}_{3}^{T} \mathcal{E}_{31} \boldsymbol{p}_{1}=0 & \text { These constraints are not independent! } \\
& \boldsymbol{e}_{31}^{T} \mathcal{E}_{12} \boldsymbol{e}_{32}=\boldsymbol{e}_{12}^{T} \mathcal{E}_{23} \boldsymbol{e}_{13}=\boldsymbol{e}_{23}^{T} \mathcal{E}_{31} \boldsymbol{e}_{21}=0
\end{array}\right.
$$

Trinocular Epipolar Constraints: Transfer

$$
\left\{\begin{array}{ll}
\boldsymbol{p}_{1}^{T} \mathcal{E}_{12} \boldsymbol{p}_{2}=0 \\
\boldsymbol{p}_{2}^{T} \mathcal{E}_{23} \boldsymbol{p}_{3}=0 \\
\boldsymbol{p}_{3}^{T} \mathcal{E}_{31} \boldsymbol{p}_{1}=0 & \square
\end{array} \text { Given } \mathrm{p}_{1} \text { and } \mathrm{p}_{2}, \mathrm{p}_{3} \text { can be computed } . ~\right. \text { as the solution of linear equations. }
$$

Trifocal Constraints

$z \boldsymbol{p}=\mathcal{M} \boldsymbol{P} \Longleftrightarrow \boldsymbol{l}^{T} \mathcal{M} \boldsymbol{P}=0 \Longleftrightarrow \boldsymbol{L} \cdot \boldsymbol{P}=0$ with $\boldsymbol{L}=\mathcal{M}^{T} \boldsymbol{l}$
$\square\left(\begin{array}{l}\boldsymbol{L}_{1}^{T} \\ \boldsymbol{L}_{2}^{T} \\ \boldsymbol{L}_{3}^{T}\end{array}\right) \boldsymbol{P}=\mathbf{0} \quad \begin{array}{r}\square \\ \operatorname{lank}(\mathcal{L})=2\end{array}$ where $\quad \mathcal{L} \stackrel{\text { def }}{=}\left(\begin{array}{l}\boldsymbol{l}_{1}^{T} \mathcal{M}_{1} \\ \boldsymbol{l}_{2}^{T} \mathcal{M}_{2} \\ \boldsymbol{l}_{3}^{T} \mathcal{M}_{3}\end{array}\right)$

Trifocal Constraints
Calibrated Case
$\operatorname{Rank}(\mathcal{L})=2 \quad$ where $\quad \mathcal{L} \stackrel{\text { def }}{=}\left(\begin{array}{l}\boldsymbol{l}_{1}^{T} \mathcal{M}_{1} \\ \boldsymbol{l}_{2}^{T} \mathcal{M}_{2} \\ \boldsymbol{l}_{3}^{T} \mathcal{M}_{3}\end{array}\right)$

Pick $\quad \mathcal{M}_{1}=\left(\begin{array}{ll}\mathrm{Id} & \mathbf{0}\end{array}\right), \quad \mathcal{M}_{2}=\left(\begin{array}{ll}\mathcal{R}_{2} & \boldsymbol{t}_{2}\end{array}\right)$ and $\quad \mathcal{M}_{3}=\left(\begin{array}{ll}\mathcal{R}_{3} & \boldsymbol{t}_{3}\end{array}\right)$.

$$
\mathcal{L}=\left(\begin{array}{cc}
\boldsymbol{l}_{1}^{T} & 0 \\
\boldsymbol{l}_{2}^{T} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \boldsymbol{t}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \boldsymbol{t}_{3}
\end{array}\right) \quad \boldsymbol{p}_{1}^{T}\left(\begin{array}{l}
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{2} \boldsymbol{l}_{3} \\
\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{3} \boldsymbol{l}_{3}
\end{array}\right)=0
$$

Trifocal Constraints
Uncalibrated Case

$$
\begin{gathered}
\operatorname{Rank}(\mathcal{L})=2 \text { where } \\
\mathcal{L} \stackrel{\text { def }}{=}\left(\begin{array}{l}
\boldsymbol{l}_{1}^{T} \mathcal{M}_{1} \\
\boldsymbol{l}_{2}^{T} \mathcal{M}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{M}_{3}
\end{array}\right) \\
\square \mathcal{L}=\left(\begin{array}{cc}
\boldsymbol{l}_{1}^{T} \mathcal{K}_{1} & 0 \\
\boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \mathcal{R}_{2} & \boldsymbol{l}_{2}^{T} \mathcal{K}_{2} \boldsymbol{t}_{2} \\
\boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \mathcal{R}_{3} & \boldsymbol{l}_{3}^{T} \mathcal{K}_{3} \boldsymbol{t}_{3}
\end{array}\right)
\end{gathered}
$$

Pick $\mathcal{M}_{1}=\left(\begin{array}{ll}\mathcal{K}_{1} & \mathbf{0}\end{array}\right), \mathcal{M}_{2}=\left(\begin{array}{ll}\mathcal{A}_{2} \mathcal{K}_{1} & \boldsymbol{a}_{2}\end{array}\right)$ and $\mathcal{M}_{3}=\left(\begin{array}{ll}\mathcal{A}_{3} \mathcal{K}_{1} & \boldsymbol{a}_{3}\end{array}\right)$.
$\boldsymbol{l}_{1} \propto\left(\begin{array}{l}\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{2} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{3} \boldsymbol{l}_{3}\end{array}\right) \quad \longleftrightarrow \boldsymbol{p}_{1}^{T}\left(\begin{array}{l}\boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{1} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{2} \boldsymbol{l}_{3} \\ \boldsymbol{l}_{2}^{T} \mathcal{G}_{1}^{3} \boldsymbol{l}_{3}\end{array}\right)=0$

Properties of the Trifocal Tensor

- For any matching epipolar lines, $\boldsymbol{I}_{2}{ }^{\mathrm{G}}{ }_{1}{ }_{1} \boldsymbol{I}_{3}=0$.
- The matrices G_{1}^{i} are singular.
- They satisfy 8 independent constraints in the uncalibrated case (Faugeras and Mourrain, 1995).

Estimating the Trifocal Tensor

- Ignore the non-linear constraints and use linear least-squares a posteriori.
- Impose the constraints a posteriori.

For any matching epipolar lines, $\boldsymbol{I}_{2}^{\mathrm{T}} \mathrm{G}_{1}^{i} \boldsymbol{I}_{3}=0$.

The backprojections of the two lines do not define a line!

Multiple Views (Faugeras and Mourrain, 1995)

$$
z \boldsymbol{p}=\mathcal{M} \boldsymbol{P} \Longleftrightarrow \boldsymbol{p} \times(\mathcal{M} \boldsymbol{P})=\left(\left[\boldsymbol{p}_{\star}\right] \mathcal{M}\right) \boldsymbol{P}=0
$$

$$
\binom{u \mathcal{M}^{3}-\mathcal{M}^{1}}{v \mathcal{M}^{3}-\mathcal{M}^{2}} \boldsymbol{P}=0 \quad \text { where } \quad \mathcal{M}=\left(\begin{array}{l}
\mathcal{M}^{1} \\
\mathcal{M}^{2} \\
\mathcal{M}^{3}
\end{array}\right)
$$

$$
\mathcal{Q P}=0 \quad \text { where } \quad \mathcal{Q} \stackrel{\text { def }}{=}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{1} \\
v_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{2} \\
u_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{1} \\
v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2} \\
u_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{1} \\
v_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{2}
\end{array}\right) \Longrightarrow \operatorname{Rank}(\mathcal{Q}) \leq 3
$$

Two Views

$$
\mathcal{Q P}=0 \quad \text { where } \quad \mathcal{Q} \stackrel{\text { def }}{=}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{2} \\
v_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{2} \\
u_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{3} \\
v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2} \\
u_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{4} \\
v_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{2}
\end{array}\right) \Longrightarrow \operatorname{Rank}(\mathcal{Q}) \leq 3
$$

$$
\operatorname{Det}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{1} \\
v_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{2}
\end{array}\right)=0 \quad \square \text { Epipolar Constraint }
$$

Three Views

$$
\mathcal{Q P}=0 \quad \text { where } \quad \mathcal{Q} \stackrel{\text { def }}{=}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
u_{2} \mathcal{M}_{2}^{2}-\mathcal{M}_{2}^{2} \\
v_{2} \mathcal{M}_{2}^{2}-\mathcal{M}_{2}^{2} \\
u_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{1} \\
\frac{v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2}}{u_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{4}} \\
v_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{2}
\end{array}\right) \Longrightarrow \operatorname{Rank}(\mathcal{Q}) \leq 3
$$

$$
\operatorname{Det}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{1} \\
v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2}
\end{array}\right)=0 \quad \square \text { Trifocal Constraint }
$$

Four Views

$$
\mathcal{Q} \boldsymbol{P}=0 \quad \text { where } \quad \mathcal{Q} \stackrel{\text { def }}{=}\left(\begin{array}{l}
u_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{1} \\
\hline v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\
\hline u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{1} \\
v_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{2} \\
u_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{1} \\
\frac{v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2}}{\left(u_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{1}\right.} \\
\frac{v_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{2}}{\mid}
\end{array}\right) \Longrightarrow \operatorname{Rank}(\mathcal{Q}) \leq 3
$$

$\operatorname{Det}\left(\begin{array}{l}v_{1} \mathcal{M}_{1}^{3}-\mathcal{M}_{1}^{2} \\ u_{2} \mathcal{M}_{2}^{3}-\mathcal{M}_{2}^{1} \\ v_{3} \mathcal{M}_{3}^{3}-\mathcal{M}_{3}^{2} \\ v_{4} \mathcal{M}_{4}^{3}-\mathcal{M}_{4}^{2}\end{array}\right)=0 \quad \square \quad \begin{aligned} & \text { Quadrifocal Constraint } \\ & \text { (Triggs, 1995) }\end{aligned}$

Geometrically, the four rays must intersect in P..

Quadrifocal Tensor and Lines

$z \boldsymbol{p}=\mathcal{M} \boldsymbol{P} \Longleftrightarrow \boldsymbol{l}^{T} \mathcal{M} \boldsymbol{P}=0 \Longleftrightarrow \boldsymbol{L} \cdot \boldsymbol{P}=0$ with $\boldsymbol{L}=\mathcal{M}^{T} \boldsymbol{l}$

Scale-Restraint Condition from Photogrammetry

