
Introduction to Computer Science   •   Robert Sedgewick and Kevin Wayne   •   Copyright © 2005   •   http://www.cs.Princeton.EDU/IntroCS

6.  Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

2

Computer Architecture

TOY lectures.  von Neumann machine.

This lecture.  Boolean circuits.

Ahead.  Putting it all together and building a TOY machine.

3

Digital Circuits

What is a digital system?

! Digital:  signals are 0 or 1.

! Analog:  signals vary continuously.

Why digital systems?

! Accuracy and reliability.

! Staggeringly fast and cheap.

Basic abstractions.

! On, off.

! Wire:  propagates on/off value.

! Switch:  controls propagation of on/off values through wires.

Digital circuits and you.

! Computer microprocessors.

! Antilock brakes, cell phones, iPods, etc.

4

Wires

Wires.

! On (1):  connected to power.

! Off (0):  not connected to power.

! If a wire is connected to a wire that is on, that wire is also on.

! Typical drawing convention:  "flow" from top, left to bottom, right.

0

power
connection

1

1

1



5

Controlled switch.  [relay implementation]

! 3 connections:  input, output, control.

! Magnetic force pulls on a contact that cuts electrical flow.

! Control wire affects output wire, but output does not affect

control; establishes forward flow of information over time.

Controlled Switch

6

Circuit Anatomy

7

Layers of Abstraction

Layers of abstraction.

! Circuits are built from wires and switches.  (implementation)

! A circuit is defined by its inputs and outputs.  (interface)

! To control complexity, we encapsulate circuits.  (ADT)

8

Layers of Abstraction

Layers of abstraction.

! Circuits are built from wires and switches.  (implementation)

! A circuit is defined by its inputs and outputs.  (interface)

! To control complexity, we encapsulate circuits.  (ADT)



9

Logic Gates:  Fundamental Building Blocks

10

Logic Gates:  Fundamental Building Blocks

11

Multiway Gates

Multiway gates.

! OR:  1 if any input is 1; 0 otherwise.

! AND:  1 if all inputs are 1; 0 otherwise.

! Generalized:  negate some inputs.

12

Multiway Gates

Multiway gates.

! OR:  1 if any input is 1; 0 otherwise.

! AND:  1 if all inputs are 1; 0 otherwise.

! Generalized:  negate some inputs.



13

Cancelling inverters

u

u’

u

u’’

!

14

Boolean Algebra

History.

! Developed by Boole to solve mathematical logic problems (1847).

! Shannon master's thesis applied it to digital circuits (1937).

Basics.

! Boolean variable:  value is 0 or 1.

! Boolean function:  function whose inputs and outputs are 0, 1.

Relationship to circuits.

! Boolean variables:  signals.

! Boolean functions:  circuits.

"possibly the most important, and also the most famous,
 master's thesis of the [20th] century"  --Howard Gardner

16

Truth Table

Truth table.

! Systematic method to describe Boolean function.

! One row for each possible input combination.

! N inputs  !  2N rows.

AND Truth Table

0 0

0 1

1 0

1 1

0

0

0

1

x y x y

17

Truth Table for Functions of 2 Variables

Truth table.

! 16 Boolean functions of 2 variables.

ZERO

Truth table for all Boolean functions of 2 variables

y

0 0

0 1 0

1 0 0

1 1 0

0

0

1

0

0

1

0

0

x

0

0

1

1

AND

0

0

0

1

y

0

1

0

1

XOR

0

1

1

0

OR

0

1

1

1

x

0

NOR

Truth table for all Boolean functions of 2 variables

y

0 1

0 1 0

1 0 0

1 1 0

y'

1

0

1

0

x'

1

1

0

0

1

0

1

1

EQ

1

0

0

1

1

1

0

1

NAND

1

1

1

0

ONE

1

1

1

1

x

0

every 4-bit value represents one



18

Truth Table for Functions of 3 Variables

Truth table.

! 16 Boolean functions of 2 variables.

! 256 Boolean functions of 3 variables.

! 2^(2^n) Boolean functions of n variables!

AND

Some Functions of 3 Variables

z

0 0

0 1 0

1 0 0

1 1 0

y

0

x

0

0

0

0

0

0 1

1 0

1 1

01

1

1

1

0

0

0

1

OR

0

1

1

1

1

1

1

1

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

every 4-bit value represents one

every 8-bit value represents one

every 2n-bit value represents one

19

Universality of AND, OR, NOT

Fact.  Any Boolean function can be expressed using AND, OR, NOT.

! { AND, OR, NOT } are universal.

! Ex:  XOR(x,y) = xy' + x'y.

Exercise.  Show {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal.

Hint.  DeMorgan's law: (x'y')' = x + y.

x'

Expressing XOR Using AND, OR, NOT

y

0 1

1 1

0 0

1 0

x'y

0

1

0

0

x'y + xy'

0

1

1

0

xy'

0

0

1

0

y'

1

0

1

0

x XOR y

0

1

1

0

x

0

0

1

1

NOT xx'

x AND yx y

x OR y

MeaningNotation

x + y

20

Sum-of-Products

Sum-of-products.  Systematic procedure for representing a Boolean

function using AND, OR, NOT.

! Form AND term for each 1 in Boolean function.

! OR terms together.

x'yz

expressing MAJ using sum-of-products

z xyz' xyzxy'zMAJyx

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

x'yz + xy'z + xyz' + xyz

0

0

0

1

0

1

1

1

proves that { AND, OR, NOT }
are universal

21

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  XOR.



22

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  XOR.

23

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  XOR.

24

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  Majority.

25

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  Majority.



26

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  Majority.

27

size = 7, depth = 2size = 10, depth = 2

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

! Sum-of-products not necessarily optimal in:

– number of switches (space)

– depth of circuit (time)

Ex.  MAJ(x, y, z)  =  x'yz + xy'z + xyz' + xyz  =  xy + yz + xz.

28

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

! AND gates.

! OR gates.

! NOT gates.

! Wire.

Instructions.

! Step 1:  represent input and output signals with Boolean variables.

! Step 2:  construct truth table to carry out computation.

! Step 3:  derive (simplified) Boolean expression using sum-of products.

! Step 4:  transform Boolean expression into circuit.

30

ODD Parity Circuit

ODD(x, y, z).

! 1 if odd number of inputs are 1.

! 0 otherwise.

x'y'z

Expressing ODD using sum-of-products

z xy'z' xyzx'yz'ODDyx

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

x'y'z + x'yz' + xy'z' + xyz

0

1

1

0

1

0

0

1



31

ODD Parity Circuit

ODD(x, y, z).

! 1 if odd number of inputs are 1.

! 0 otherwise.

32

ODD Parity Circuit

ODD(x, y, z).

! 1 if odd number of inputs are 1.

! 0 otherwise.

33

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

! We build 4-bit adder:  9 inputs, 4 outputs.

! Same idea scales to 128-bit adder.

! Key computer component.

Step 1.  Represent input and output in binary.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

100 0

110 1+

001 1

011

842 7

753 9+

606 6

111 0

0

34

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 2.  (first attempt)

! Build truth table.

! Why is this a bad idea?

– 128-bit adder:  2256+1 rows  >  # electrons in universe!

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

4-Bit Adder Truth Table

y2y3

0

0

0

0

1

1

.

1

0

0

0

0

0

0

.

1

x0x1

0

0

0

0

0

0

.

1

0

0

0

0

0

0

.

1

x2x3

0

0

0

0

0

0

.

1

0

0

0

0

0

0

.

1

y0y1

0

1

0

1

0

1

.

1

0

0

1

1

0

0

.

1

z2z3

0

0

0

0

1

1

.

1

0

0

0

0

0

0

.

1

z0z1

0

1

0

1

0

1

.

1

0

0

1

1

0

0

.

1

28+1 = 512 rows!

c0

0

0

0

0

0

0

.

1

cin
cout



35

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 2.  (do one bit at a time)

! Build truth table for carry bit.

! Build truth table for summand bit.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0

Carry Bit

ci ci+1yixi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

Summand Bit

ci ziyixi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

cout

36

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 3.

! Derive (simplified) Boolean expression.

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0

Carry Bit

ci ci+1yixi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

Summand Bit

ci ziyixi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

cout

37

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 4.

! Transform Boolean expression into circuit.

! Chain together 1-bit adders.

38

Adder:  Interface



39

Adder:  Component Level View

40

Adder:  Switch Level View

41

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)


