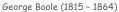
6. Combinational Circuits



Claude Shannon (1916 - 2001)

 $\textbf{Introduction to Computer Science} \quad \textbf{Robert Sedgewick and Kevin Wayne} \quad \textbf{Copyright @ 2005} \quad \textbf{http://www.cs.Princeton.EDU/IntroCS}$

Digital Circuits

What is a digital system?

■ Digital: signals are 0 or 1.

• Analog: signals vary continuously.

Why digital systems?

Accuracy and reliability.

Staggeringly fast and cheap.

Basic abstractions.

- On, off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Digital circuits and you.

- Computer microprocessors.
- Antilock brakes, cell phones, iPods, etc.

Computer Architecture

TOY lectures. von Neumann machine.

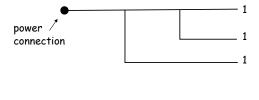
This lecture. Boolean circuits.

Ahead. Putting it all together and building a TOY machine.

Wires

Wires.

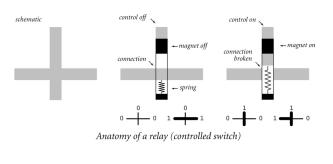
- On (1): connected to power.
- Off (0): not connected to power.
- If a wire is connected to a wire that is on, that wire is also on.
- Typical drawing convention: "flow" from top, left to bottom, right.

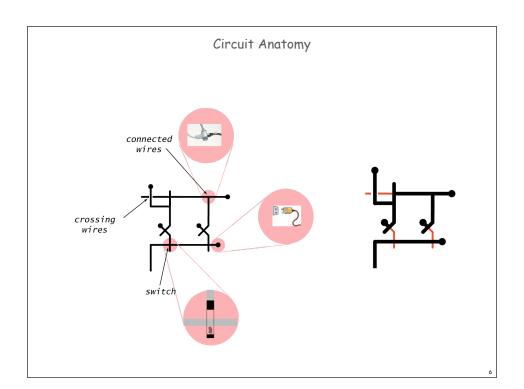


Controlled Switch

Controlled switch. [relay implementation]

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.
- Control wire affects output wire, but output does not affect control; establishes forward flow of information over time.





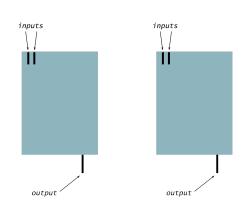
Layers of Abstraction

Layers of abstraction.

• Circuits are built from wires and switches. (implementation)

• A circuit is defined by its inputs and outputs. (interface)

■ To control complexity, we encapsulate circuits. (ADT)



Layers of Abstraction

Layers of abstraction.

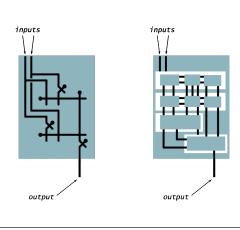
Circuits are built from wires and switches.

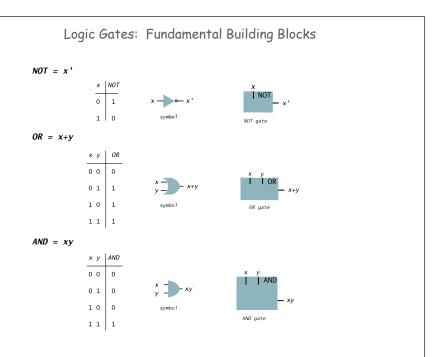
(implementation)

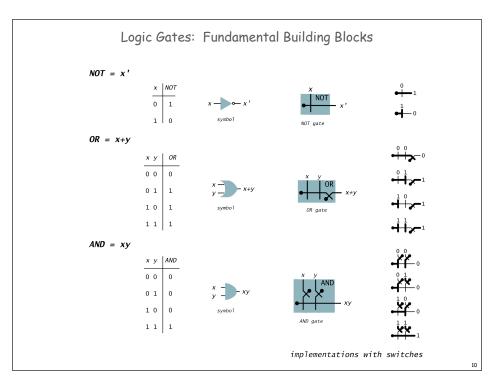
• A circuit is defined by its inputs and outputs. (int

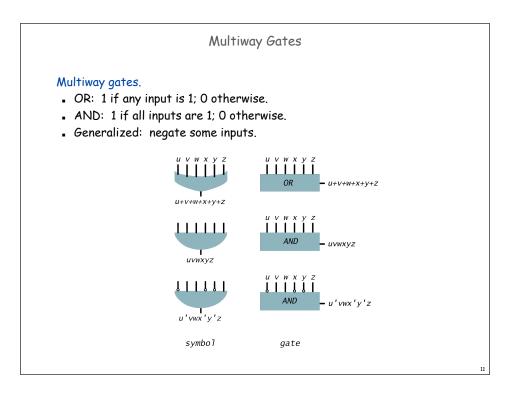
(interface)

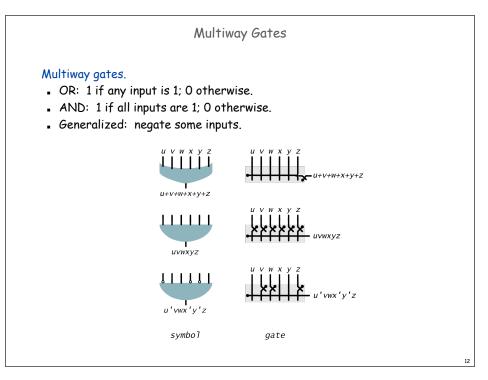
■ To control complexity, we encapsulate circuits. (ADT)











Cancelling inverters $\begin{array}{c} u \\ \downarrow \\ u' \end{array}$

Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

"possibly the most important, and also the most famous, master's thesis of the [20th] century" --Howard Gardner

Basics.

- Boolean variable: value is 0 or 1.
- Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

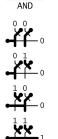
Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs \Rightarrow 2^N rows.

х	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table



Truth Table for Functions of 2 Variables

Truth table.

■ 16 Boolean functions of 2 variables.

every 4-bit value represents one

×	У	ZERO	AND		x		У	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth table for all Boolean functions of 2 variables

×	У	NOR	EQ	y'		x'		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth table for all Boolean functions of 2 variables

1

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
- 256 Boolean functions of 3 variables.
- 2^(2ⁿ) Boolean functions of n variables!
- every 4-bit value represents one
- ← every 8-bit value represents one
- ← every 2ⁿ-bit value represents one

×	У	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

Some Functions of 3 Variables

Universality of AND, OR, NOT

Fact. Any Boolean function can be expressed using AND, OR, NOT.

- { AND, OR, NOT} are universal.
- Ex: XOR(x,y) = xy' + x'y.

Notation	Meaning
x'	NOTx
×у	x AND y
x + y	x OR y

Expressing XOR Using AND, OR, NOT

×	У	x'	у'	х'у	ху'	x'y + xy'	x XOR y
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Exercise. Show $\{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{AND, XOR\}$ are universal. Hint. DeMorgan's law: (x'y')' = x + y.

Sum-of-Products

Sum-of-products. Systematic procedure for representing a Boolean function using AND, OR, NOT.

• Form AND term for each 1 in Boolean function.

proves that { AND, OR, NOT }

• OR terms together.

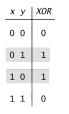
×	У	z	MAJ	x'yz	xy'z	xyz'	xyz	x'yz + xy'z + xyz' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

expressing MAJ using sum-of-products

Translate Boolean Formula to Boolean Circuit

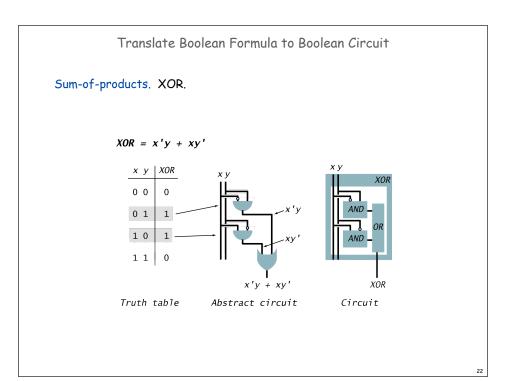
Sum-of-products. XOR.

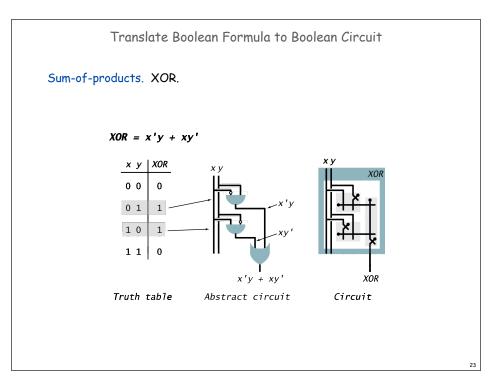
XOR = x'y + xy'

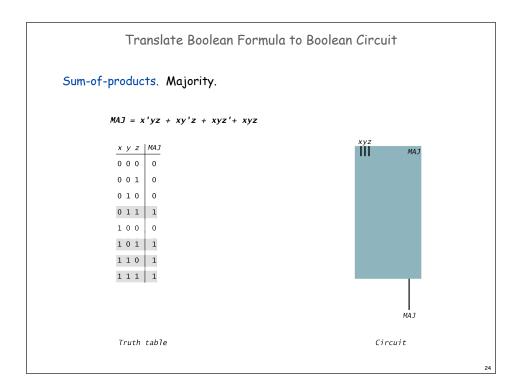


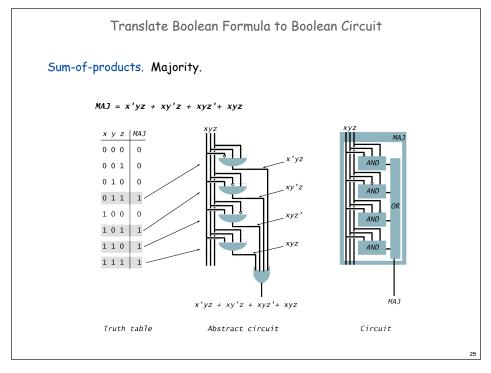
Truth table

Circuit









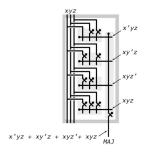
Translate Boolean Formula to Boolean Circuit Sum-of-products. Majority. MAJ = x'yz + xy'z + xyz' + xyzx y z MAJ 0 0 0 001 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 x'yz + xy'z + xyz' + xyzTruth table Abstract circuit Circuit

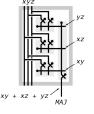
Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - number of switches (space)
 - depth of circuit (time)

Ex. MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.





size = 10, depth = 2

size = 7, depth = 2

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

ODD Parity Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

			.					
×	У	z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Expressing ODD using sum-of-products

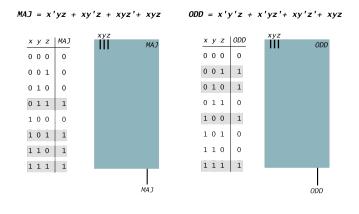
28

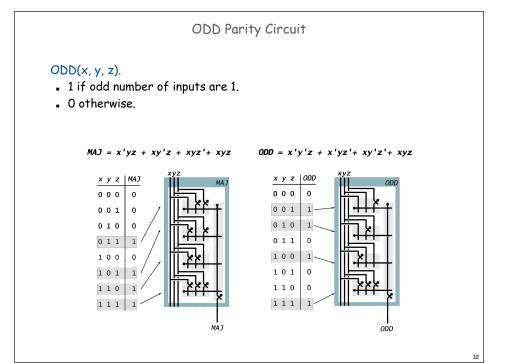
3

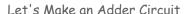
ODD Parity Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.





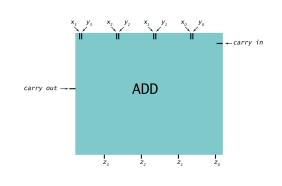


Goal. x + y = z for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

	1	1	1	0
	2	4	8	7
+	3	5	7	9
	6	0	6	6

Step 1. Represent input and output in binary.



	1	1	U	O
	0	0	1	0
+	0	1	1	1
	1	0	0	1

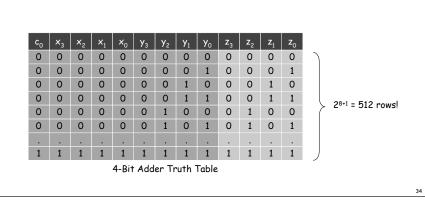
	x ₃	X ₂	x_1	x ₀
+	y 3	y ₂	y ₁	y 0
	z_3	z ₂	z_1	\mathbf{z}_0

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 2. (first attempt)

- Build truth table.
- Why is this a bad idea?
 - 128-bit adder: 2²⁵⁶⁺¹ rows > # electrons in universe!



t

x₃ x₂ x₁ x₀

y₃ y₂ y₁ y₀
z₃ z₂ z₁ z₀

.

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 2. (do one bit at a time)

- Build truth table for carry bit.
- Build truth table for summand bit.

Carry		Ві	†

×i	Υį	c _i	c _{i+1}		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Summand Bit

Outilitiana Diri					
xi	Уi	c _i	z _i		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 3.

• Derive (simplified) Boolean expression.

$\mathbf{c}_{\mathrm{out}}$	c ₃	c ₂	c ₁	c ₀ = 0
	x ₃	X ₂	x ₁	× ₀
+	y 3	y ₂	y ₁	y 0
	z_3	Z ₂	z ₁	\mathbf{z}_0

Carry Bit

		•		
	Уi	c _i	c _{i+1}	MAJ
)	0	0	0	0
)	0	1	0	0
)	1	0	0	0
)	1	1	1	1
	0	0	0	0
	0	1	1	1
	1	0	1	1
	1	1	1	1
		0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1	y _i y _i c _i 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Summand Bit

xi	Υį	c _i	z _i	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

. .

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

