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The ongoing analyses of published genome-scale data sets is evidence that different approaches are required to
completely mine this data. We report the use of novel tools for both visualization and data set comparison to
analyze yeast gene-expression (cell cycle and exit from stationary phase/G0) and protein-interaction studies.
This analysis led to new insights about each data set. For example, G1-regulated genes are not co-regulated
during exit from stationary phase, indicating that the cells are not synchronized. The tight clustering of other
genes during exit from stationary-phase data set further indicates the physiological responses during G0 exit are
separable from cell-cycle events. Comparison of the two data sets showed that ribosomal-protein genes cluster
tightly during exit from stationary phase, but are found in three significantly different clusters in the cell-cycle
data set. Two protein-interaction data sets were also compared with the gene-expression data. Visual analysis of
the complete data sets showed no clear correlation between co-expression of genes and protein interactions, in
contrast to published reports examining subsets of the protein-interaction data. Neither two-hybrid study
identified a large number of interactions between ribosomal proteins, consistent with recent structural data,
indicating that for both data sets, the identification of false-positive interactions may be lower than previously
thought.

[Supplemental material is available online at http://www.genome.org and at http://biology.unm.
edu/biology/maggieww/Public_Html/Visualcomparison.htm, including data sets and download information for
VxInsight.]

Enormous amounts of data are generated by high-
throughput, genome-scale studies. Currently, data sets are
available in which the quality of the data is so good that
numerous reanalyses have yet to mine all the information
present in them. Because of the size of genome-scale data
sets, it is currently difficult, if not impossible, for the average
researcher to ask global questions about a single data set,
much less compare several data sets simultaneously. For this
data to be completely mined, improved methods for integra-
tion and analysis of this information will be necessary to ex-
tract information from within and between the data sets and
to develop hypotheses on the basis of these analyses (Aach
et al. 2000). Toward that end, we performed a comparative
analysis of four data sets from the yeast Saccharomyces cerevi-
siae, using the ordination and visualization tool VxInsight
(Viswave).

As a model system for which the entire genome has been
known since 1996 (Goffeau et al. 1996), S. cerevisiae has been
the subject of several genome-scale studies, including gene
expression (Lasharki et al. 1997; Chu et al. 1998; Eisen et al.
1998; Ferea et al. 1999; Gasch et al. 2000), protein-protein
interactions (Schwikowski et al. 2000; Ito et al. 2001), and
gene deletions (Winzeler et al. 1999). Research using yeast
and other model systems is now poised to reveal even greater
insight into cellular dynamics. As information about localiza-

tion, modification, and abundance of all the proteins in the
cell is obtained, it will become possible to reconstruct the
dynamic interactions between all the major levels of organi-
zation in living organisms.

The data sets that we used for this comparative analysis
include the following: transcriptional analysis of exit from
stationary phase and the cell cycle after release from �-factor
arrest (Spellman et al. 1998) and two protein-protein interac-
tion data sets (Schwikowski et al. 2000; Ito et al. 2001). We
chose these gene-expression data sets because stationary
phase, or G0, is an offshoot of the mitotic cell cycle, and cells
exiting G0 reenter mitosis at G1 (Werner-Washburne et al.
1993). In addition, starvation-induced G0 arrest is commonly
used to synchronize eukaryotic cells to study reentry into the
cell cycle (Callard andMazzolini 1997; Zeise et al. 1998; Hilde-
brand and Dahlin 2000).

It is important to understand the relationship between
the quiescent state and the cell cycle because most solid tu-
mors are derived from G0 cells, and the proof-of-principal for
chemotherapeutics is the ability to restore G0 arrest (Clark
and Gillespie 1997; Zeitler et al. 1997; Joshi et al. 1998; Pajic
et al. 2000). Additionally, a variety of important pathogens,
such as Mycobacterium tuberculosis and Cryptoccus neoformans,
are relatively difficult to treat because they reside in the body
for extended periods of time as quiescent antibiotic-resistant
cells (Tomee et al. 1997; Murray 1999). Finally, pathogens
used as bio-weapons are usually stored and disseminated as
quiescent cells. Thus, the importance of the G0 state and the
relative lack of information about this phase of the life cycle
underscore the importance of identifying the differences
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and similarities between the mitotic cell cycle and exit
from G0.

In the visual comparison reported here, we were able to
detect significant differences in gene clusters between the two
gene-expression data sets, indicating that yeast cells exiting
starvation-induced quiescence are not synchronous and that
expression of ribosomal protein genes during the cell cycle
shows three distinct patterns. Overlaying protein-interaction
data led to the rapid detection of differences in the data sets
and the finding that neither protein-interaction data set de-
tected interactions between ribosomal proteins in the same
subunit, which is consistent with recently published struc-
tural data, and indicates that the two-hybrid assay may be less
prone to false-positives than previously thought.

RESULTS

Data Set Topographies
Ordination of genes of the �-factor arrest/cell-cycle data into
clusters (18 experiments per 6000 genes; Spellman et al.
1998), as described in Methods, resulted in a circular pattern
(Fig. 1B,C). Hills or ridges of G1-, S-, M-, and M-G1–regulated
genes are found on the circumference of the circle, although
not all of the groups of genes on the circumference of the
ordination are cell-cycle regulated (see Web Supplement). In
addition, M and G1 clusters, with genes with expressions that
are approximately opposite, are located on opposite sides of
the topography. The two inner groups contain genes with
regulation that is fairly constant throughout the cell cycle,

including many genes involved in
secretion, sterol biosynthesis, Golgi
function, and other constitutive
pathways.

In the topography of the exit
from stationary-phase data set, the
45 genes with mRNAs that accumu-
late in stationary phase are clus-
tered in a hill at the bottom right of
the topography (Fig. 2). Genes with
mRNAs that accumulate rapidly as
cultures exit stationary phase are
found at the top and left sides of
the topography. Background-
normalized data from membrane
hybridizations were used for this
analysis. Although there is varia-
tion in each of the expression pro-
files as a function of membrane and
hybridization order, these differ-
ences were not significant, and nor-
malization of this data by several
methods did not affect the clusters,
although it did have an effect on
the overall topography (data not
shown).

Visual Queries of Two
Gene-Expression Data Sets
Using microarray data to develop
hypotheses about related biological
processes requires the ability to
make comparative queries of mul-
tiple data sets. For this analysis, we
chose to investigate the relation-
ships between the processes of the
mitotic cell cycle and exit from sta-
tionary phase in yeast. Cells in sta-
tionary-phase cultures are small
and unbudded and are considered
to be in the G0 state of the cell
cycle. We asked whether cell cycle–
regulated genes that clustered in
the cell-cycle data set (Fig. 1B,C)
also clustered in the exit from sta-
tionary-phase data set (Fig. 2). A set
of G1-regulated genes in the cell-
cycle topography (Fig. 3A) was se-
lected, and the position of these

Figure 1 �-Factor–arrest data set (18 time points) ordinated and visualized in VxInsight. (A) Cell-
cycle gene expression after �-factor arrest and the dendogram indicating similarities of gene expression
as presented by Spellman et al. (Reprinted, with permission, from Spellman et al. 1998.) (B) Three-
dimensional topography in which mountains are formed over clusters of genes. The height of the
mountain corresponds to the number of genes beneath it. Typical expression profiles for genes in each
mountain are provided. G1, S, and M: Genes in these clusters are induced during the G1, S, or M phase
of the cell cycle, respectively. (C) Ordination of genes (dots) that underlie the topography with links
(blue lines with yellow arrows at each end) showing strong similarities (Pearson’s R > 0.887) that exist
between genes in different clusters.
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genes was identified in the stationary-phase exit topography
(Fig. 3B). The selected G1-induced genes, which are tightly
clustered during the cell cycle, were randomly positioned in
the stationary-phase exit topography.

To determine whether genes were G1 regulated, each
gene was assigned a value that reflected how purely its expres-
sion coincided with G1, which allowed us to rank order the
subset of classical cell-cycle genes. We then examined groups
of these genes. Of the 10 strongest G1-regulated genes—
including CLB6, SWI4, MCD1, RNR1, MNN1, YOX1, POL30,
CLN2, SVS1, and TOS4—one half of these genes were ran-
domly distributed, and one half were clustered (P < 0.001) in
the exit from stationary-phase data set (see supplemental
data). When the positions of these genes were evaluated in
the exit from stationary-phase topography, POL30 andMCD1
clustered with the genes with induction that occurs almost
immediately on refeeding, including CLN3 and most of the
ribosomal protein genes. SWI4 clustered with genes with mR-
NAs that accumulate in the first 15 min and then remain
fairly constant. In contrast, five of the most G1-like genes
cluster in a region in which mRNA abundance fluctuates as a
function of the particular membrane, but overall, the gene
expression remains constant from hybridization to hybridiza-

tion for the same membrane. These genes are CLB6, RNR1,
CLN2, TOS4, and SVS1. The probability of finding these genes
clustered in a region of 516 genes is highly significant
(P < 0.001).

During the cell cycle, CLN3 is induced first, followed by
POL30 and MCD1, which are co-expressed with CLN1 (Stan-
ford Genome Database). Although we had hypothesized that
at least some of the patterns of gene expression might be
conserved between the cell cycle and exit from stationary
phase, the small subset of highly G1-regulated genes does not
follow this temporal relationship. Early, morphological data
had indicated that the cells in stationary-phase cultures did
not exit stationary phase synchronously (Johnston et al.
1977). The induction of CLN3, POL30, and MCD1 almost im-
mediately on refeeding and the relatively random distribu-
tion of the majority of other strongly G1-regulated genes in
the exit from stationary-phase data set are consistent with the
hypothesis that cells exiting stationary phase are not synchro-
nous. Further analysis will be required to determine the con-
ditions under which cells exiting stationary phase can be
completely synchronized.

Despite the lack of co-regulation of cell-cycle genes, there
are clusters of genes with expression that increased or de-

Figure 2 VxInsight-generated ordination of exit from stationary-phase data set. Examples of gene expression within each hill or cluster are
shown. Along the x-axis of insert graphs are time points (0, 15, 30, 45, and 60 min) after re-feeding. The y-axis of insert graphs indicates the
fold-increase or decrease from time equals; 0, which is an average of four to five replicates for each time point. Numbers in the insert graphs
indicate the maximum value of the y-axis, which indicates relative expression values obtained using GeneSpring (Silicon Genetics; see Methods).
Data were generated as described (Methods).
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creased dramatically during exit from stationary phase. To
determine whether genes co-expressed during exit from sta-
tionary phase might also be co-expressed in the cell-cycle data
set, we investigated the small subunit ribosomal-protein (RPS)
genes. Fifty-three of the 59 RPS genes are found in a ridge in
the exit data set (Fig. 4A). When the positions of all the RPS
genes are identified in the cell-cycle topography, they are not
clustered in one group but are located mostly in three differ-
ent groups of genes (Fig. 4B), with gene-expression profiles
that are significantly different (P < 0.0001). We conclude
from this that RPS gene expression, which is tightly co-
regulated during exit from stationary phase and during other

stress conditions (Gasch et al. 2000), shows at least three dis-
tinct patterns of expression during the mitotic cell cycle.

The clustering of these genes into three groups is inter-
esting because many ribosomal protein genes are duplicated
and found as highly conserved gene pairs. Thus, any separa-
tion of these pairs of genes may have evolutionary implica-
tions. Of the 46 genes comprising 23 pairs of ribosomal pro-
tein genes that were present in the three clusters, there was an
almost a threefold higher chance of members of a pair being
in different clusters (34 of 48) compared with finding them in
the same cluster (12 of 48; data not shown). Additional ex-
periments will be required to determine the correlation of

Figure 3 Location of G1-regulated genes in two different gene-expression data sets. (A) Dots represent selected G1-regulated genes in �-factor–
arrest cell-cycle data (Spellman et al. 1998). (B) Location of the same genes in the ordination of stationary-phase exit data.

Figure 4 Location of ribosomal protein genes (RPS genes) in two gene-expression data sets. (A) Location of RPS genes in exit from stationary
phase data. Fifty-three of 59 RPS genes are localized in the upper middle cluster. (B) Localization of the same RPS genes in cell-cycle data set. Arrows
indicate three major groups of RPS genes.
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expression with protein abundance and, thus, whether the
differences in ribosomal gene expression during the cell cycle
have an effect on ribosome function or biogenesis.

Visual Analysis of Protein-Protein Interactions
To evaluate the extent to which co-expressed genes were
found to encode interacting proteins, we incorporated infor-
mation from two protein-protein interaction data sets (Schwi-
kowski et al. 2000; Ito et al. 2001) in the cell-cycle topography
(Fig. 5). Ito’s data sets including 4549 interactions (1532 non-
duplicated interactions) in the full data set (Ito et al. 2001) are
based on yeast two-hybrid assays, whereas Schwikowski’s data
set, reporting 2709 interactions (1157 nonduplicated interac-
tions), was gathered from yeast two-hybrid, biochemical, and
genetic data (Schwikowski et al. 2000). Interacting pairs of
proteins are visualized as lines drawn between two genes on
the topography. Because the protein-protein interaction data
is binary—that is, proteins either interact or they do not—the
relative strength of the interactions is not a parameter that
can be used for visualization.

The impression from both data sets is that the complete
set of interacting proteins creates a network over the entire
expression topography (Fig. 5A,B; see supplemental data). At
this level of analysis, differences in the structure of the data
can be detected only at the margins. When the protein inter-

actions that are common to both data sets are visualized in
VxInsight, the previously reported lack of overlap in the two
data sets (Ito et al. 2001) can be clearly seen (only 19% of
Schwikowski and 8.3% of Ito’s full data sets are in common;
Fig. 5C,D). Visualization of only the genes encoding interact-
ing proteins common to both data sets (Fig. 5D) shows that
relatively large segments of the topography contain no inter-
acting proteins.

In both data sets, many interactions are observed be-
tween proteins encoded by tightly clustered G1 phase–
regulated genes (Fig. 6). Although both data sets contain
G1-regulated genes that interact with each other, there is
little overlap between the data sets (Fig. 6D). Ito’s data set
(Fig. 6B) includes many interactions between proteins en-
coded by genes in the G1 cluster and an adjacent cluster,
containing genes that are not cell-cycle regulated. In con-
trast, the interactions reported in Schwikowski’s data set
(Fig. 6C) more closely parallel the connections based
on strong similarities of gene expression (Fig. 6D). In the
region of M phase–regulated genes, both data sets report
interacting proteins that parallel the strong similarities in
gene expression, but with little overlap between the data sets
(data not shown). In examining the G1-regulated genes re-
ported to be involved in interactions in both data sets, Ito’s
data set is much more likely to contain genes of unknown

Figure 5 Protein-protein interaction maps as a function of the cell-cycle gene-expression topography. Lines are drawn between genes encoding
interacting proteins. (A) Schwikowski’s complete data set. (B) Ito’s full data set. (C) Protein-protein interactions reported from both data sets. (D)
Genes encoding interacting proteins common to both data sets. In A and B, genes encoding proteins involved in interactions are indicated by
yellow pyramids.
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function (33 of 78; 42%) than is Schwikowski’s data set (5
of 50; 10%; data not shown). Furthermore, there are no genes
in the main G1-regulated cluster that encode interactive
proteins common to both data sets (Fig. 6D). Looking at
genes within the G1-regulated gene cluster that are reported
to interact in each data set, Schwikowski reports an interac-
tion between MSH6 and PMS1, both involved in mismatch
repair, whereas Ito reports an interaction between RFL2 and
CAC1, both subunits of chromatin assembly factor (CAF-1).
The lack of overlap in the two data sets and the presence of
reasonable interacting pairs in both data sets indicate that for
the present time, the data sets are most useful when examined
concurrently, as was performed in a recent paper (Ge et al.
2001). We conclude from this analysis that the differences in
results of both studies could be indicative of the range of
detection in the two-hybrid assay and the difficulty in obtain-
ing sample sizes large enough to include the entire set of
interactions.

The structures of the two data sets are also distinct. Sev-
eral genes have significantly more interactions in the Ito data
set (Fig. 7A) than in the Schwikowski data set (Fig. 7B). One
of these, Nup116p, a nuclear pore protein, is reported to
have 125 interactions in the Ito full data set, 15 in the core
data set (interactions observed three separate times), and
three in the Schwikowski data set (which includes data from

the Munich Information Center for Protein Sequences).
Nup116p has been shown genetically or biochemically to in-
teract with 15 proteins (www.Proteome.com), including
many involved in nuclear pore function (Fig. 7D). Based on
information from the Munich Information Center for Protein
Sequences, Schwikowski reported three Nup116p-interacting
proteins: Kap95p, Kap104p, and Gle2p. Ito, based solely on
two-hybrid data, also identified three of these interacting
proteins, Gle2p, Nup 82p, and Nup100p, in the full data set
(Fig. 7B).

Interestingly, when interactions reported in Ito’s full
data set for Nup116p are visualized as a function of gene ex-
pression during exit from stationary phase (Fig. 7C), it is strik-
ing that there are no interactions between Nup116p and pro-
teins encoded by stationary-phase genes and only three inter-
actions with proteins encoded by genes with expression that
increases rapidly after refeeding, including those in ribosome
ridge. If Nup116p interactions were randomly distributed,
more than nine interactions would have been expected with
proteins encoded by these genes. In ribosome ridge alone,
∼ 125 proteins (of 290) are known to be ribosomal, and nine
other proteins are predicted to be nuclear, yet there is are only
two interactions with proteins encoded by genes in this clus-
ter. Further experiments will be necessary to determine
whether this interaction pattern is accurate or reflective of a

Figure 6 Interactions among proteins encoded by G1-regulated genes from the cell-cycle data set. (A) Topographical presentation of G1-
regulated gene cluster with connections between genes showing strong similarities (R > 0.887) of expression between genes. (B) Genes encoding
interacting proteins from Ito’s full data set. (C) Genes encoding interacting proteins reported from Schwikowski’s data set. (D) Protein interactions
in common to the two data sets. Connections between genes in B–D indicate interactions occurring between proteins encoded by the specific
genes.
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higher than expected rate of false negatives (Ito et al. 2001)
with this assay.

Relative Absence of Ribosomal-Protein Interactions
in the Protein-Interaction Data Sets
Because of the strong similarity in gene expression among
the ribosomal protein genes (RPS and RPL genes) during
exit from stationary phase, we were interested in examining
the interactions among proteins encoded by genes found
in ribosome ridge in the exit from stationary-phase data set.
Surprisingly, although there was a high degree of similarity
of gene expression and some interactions reported between
nonribosomal proteins in ribosome ridge, there was only one
interaction reported between ribosomal proteins (see Web
Supplement). The absence of interactions among these pro-
teins was surprising but consistent with recent structural data,
indicating that ribosomal proteins interact primarily with ri-
bosomal RNA and not with each other (Spahn et al. 2001).
This observation, which is in contrast to results from immu-
noprecipitation–mass spectroscopy analysis of protein com-
plexes in which ribosomal proteins are common contami-
nants (Gavin et al. 2002), actually strengthens the confidence
in both two-hybrid data sets, indicating that the level of
identification of false-positive interactions (Schwikowski

et al. 2000), at least among some groups of proteins, is rela-
tively low.

DISCUSSION
An integrative approach to cell function requires the tools to
compile and integrate information from different levels of
cellular organization (Ideker et al. 2001). We have shown the
utility of visual comparison of distinct types of genome-scale
data sets. In this process, we were able to conclude that G1-
regulated genes were not coordinately regulated during exit
from stationary phase, indicating that cells exiting stationary
phase are not synchronous or that a subset of G1-regulated
genes is required for this process, leading to interesting and
testable, novel hypotheses about reentry into the mitotic cell
cycle.

The hypothesis that the cells in stationary-phase cultures
are not synchronous is supported by the observation of dif-
ferent sizes of cells in stationary-phase cultures (Werner-
Washburne et al. 1993) and previous studies of reentry into
the cell cycle indicating that cells do not bud until they reach
a critical size (Johnston et al. 1977). In addition, one report
indicated that mammalian cells are not synchronized when
induced to grow by refeeding (Cooper 1998), although G0

arrest by serum starvation is a method commonly used to

Figure 7 Protein-protein interactions between Nup116p and other proteins as a function of gene expression. (A) Ito’s full data set: cell-cycle
expression topography. (B) Schwikowski’s full data set: cell-cycle topography. (C) Ito’s full data set: exit from stationary phase topography. (D)
Diagram of Nup116p interactions in the nuclear pore from the Munich Information Center for Protein Sequences (http://vms.gsf.de/htbin/
search_code/YMR047C). (Reprinted, with permission, from E. Hurt, BZH; Universitaet Heidelberg.)
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synchronize mammalian cells (Callard and Mazzolini 1997;
Zeise et al. 1998; Hildebrand and Dahlin 2000). If yeast
cells can be synchronized during exit from stationary phase;
for example, by isolating small unbudded cells, it should be
possible to distinguish those changes in gene expression that
are physiological in nature (e.g., induction of ribosomal-
protein genes) from those that are specific for the cell-cycle tran-
sition (e.g., expression of cell cycle–regulated genes). The discov-
ery of different genes required for the physiological response
and the cell-cycle response could easily lead to the development
of novel drug-targeting strategies that are specific for quiescent
cells.

The lack of overlap in the two protein-interaction data
sets from yeast (Schwikowski et al. 2000; Ito et al. 2001) has
been a puzzle to researchers interested in proteomics; to date
no clear reason for these differences has been determined.
One suggestion was that the size of the cloned genes might
have been a factor (Hazbun and Fields 2001). In our analysis,
there was no clear reason to exclude data from either data set.
A study of the relationship between cell-cycle expression and
protein-interaction data was recently published (Ge et al.
2001) in which the protein-interaction data were combined.
This is consistent with our conclusions for the two data sets
analyzed here. We hypothesize that the differences between
the two data sets could be caused by the ability of two-hybrid
analysis to detect a very wide range of interactions, and that
the sample size, even in genome-scale analyses, may be too
small to detect all of the interactions in one or even in several
experiments.

The process of analysis presented here, although ex-
tremely useful to researchers interested in the quiescent state,
is also meant to serve as an example that can be used by
biologists interested in other questions. For example, is it pos-
sible to evaluate differences between distinct, but related, de-
velopmental pathways by identifying genes that cluster in
one expression data set but not in another? Is it possible to
identify protein interactions that occur only under specific
growth conditions by identifying those conditions in which
interacting proteins are clustered as a function of gene expres-
sion?

As multi–data set analyses become more common, they
will also lead to changes in experimental design, for example,
the increased use of time-course experiments and coordina-
tion or parallelization of assays for gene expression and pro-
tein interactions, abundance, and/or modifications. Addi-
tional pressure for these types of experiments will come from
the need for complete characterization of complex processes,
such as regulatory pathways, involving every level of cellular
and multicellular organization. Because it is also unlikely that
any one level of cellular organization will provide all the criti-
cal elements for diagnostics, both basic and applied research
will fuel the continued development of more functional and
intuitive software tools for this analysis.

METHODS

Exit From Stationary Phase: Growth Conditions,
RNA Isolation, and Microarray Analysis
Overnight cultures of yeast cells (S288C) were inoculated
into rich glucose-based medium (YPD) and incubated at 30°C
with shaking. At day 7, cells were harvested, washed, resus-
pended to an OD600 of 2 in fresh YPD and returned to 30°C.
Samples ( ∼ 40 OD600 units) were taken at t = 0, 15, 30, 45, and
60 min after cells were resuspended in fresh rich medium.

Cells were harvested by centrifugation at 4°C and washed
once with ice-cold water. Cell pellets were stored at �70°C
until use.

Total RNA from ∼ 40 OD units of cells was extracted using
a modified Gentra protocol. Briefly, cell pellets were resus-
pended in 300 µL of cell lysis buffer (Gentra) to which ∼ 0.2
gm of acid-washed beads had been added. The cells were lysed
by vortexing for 30 sec followed by 30 sec on ice (six repeti-
tions). DNA and protein were precipitated from the superna-
tant, and the RNA was further purified with a phenol/
choloroform extraction and DNase treatment.

Radiolabeled ([33P]-dCTP) cDNA “probe” was obtained
by reverse transcription of total RNA (2 µg) following the
protocol from Research Genetics (www.resgen.com). cDNA
was purified to remove unincorporated nucleotides, and total
incorporated counts were measured by scintillation counting.
The entire probe was then hybridized to nylon membranes
containing 6144 yeast open reading frames (Research Genet-
ics). Five sets of nylon membranes were hybridized per experi-
ment (one time point per membrane set per hybridization).
Hybridization was detected by phosphor imaging, and the
scanned images were uploaded into Research Pathways Image
software (Research Genetics) and as background-subtracted
counts into GeneSpring (Silicon Genetics) and VxInsight (Vis-
wave). Data were normalized using the 50th percentile of all
measurements as a positive control. Each measurement was
divided by this synthetic positive control to obtain relative
expression values.

Replicate experiments were performed by stripping the
nylon membranes and reprobing (following the protocol
from Research Genetics) with a new reverse transcription re-
action obtained from the original RNA extracts. Four to five
replicates were performed for each time point.

Data Preparation and Analysis With VxInsight
Gene expression values in tab-delimited data files were used
to compute all pair-wise correlations between genes. For each
gene, the 20 strongest positive correlations were retained and
used for clustering. Because the significance of correlations is
nonlinear (a change of 0.05 is much more significant for
larger correlations than for smaller ones), the correlations
were transformed to a T-statistic, which reflects the statistical
rareness of the correlation numbers. In each case, the two
gene names and the T-statistic for their correlation were
passed to the VxOrd clustering program. The algorithm used
by VxOrd places genes on a two-dimensional plane with re-
spect to their similarities (i.e., the T-statistics). It minimizes
the potential energy of particles (genes) attracted to each
other by forces proportional to their similarities and repulsed
from each other by a local force proportional to the density of
genes in the immediate region of each gene. The details of
the ordination are described more fully elsewhere (Davidson
et al. 2001). The hills represent gene clusters, which are de-
termined by similarities in gene expression. The topographi-
cal distance between genes and clusters is a function of the
similarity of expression between the genes, and the height of
the hills in VxInsight corresponds to the number of genes
beneath them.

We decided to identify as strongly correlated, all gene
pairs that could have true correlations, � exceeding 0.95. To
find the appropriate critical value for R, the sample correla-
tion rather than the assumed underlying true correlation � we
used the approach described in Davidson et al. (2001). Briefly,
if two genes have some true long-term correlations (e.g.,
� = 0.95) and we measure these two genes with only 18 mi-
croarray experiments, our particular sample correlation will
often fall below R = 0.95. For any critical value we might
choose, there would be a risk of some rare set of 18 experi-
ments yielding a sample correlation less than our selected
value. However, we can control that risk by choosing a critical
value such that the chance of seeing one of those misleading
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sample correlations is acceptably small. So, for example, in
our analysis we were willing to accept the chance of missing
a pair of strongly correlated genes (with a true long-term cor-
relation, � � 0.95) only one time in 20. The analysis described
in Davidson et al. (2001) indicates that the critical value for
the observed sample correlations should be R > 0.887. Gene
pairs passing this test are identified as being strongly corre-
lated in our analysis.

Identification of Highly Correlated,
G1-Regulated Genes
Genes that are strongly up-regulated in G1-phase in the �-fac-
tor arrest/cell cycle data set show sharp increases in the third
through fifth experiment and then again in the 11th through
13th experiment and are much lower at all other times (Spell-
man et al. 1998). To generate a list of these genes, we com-
puted the dot product of the expression of every gene with a
vector having +1 values where G1-regulated genes would be
expected to be up-regulated, and �1 values elsewhere. These
dot products were sorted and the largest of them were used to
identify the strongest G1-regulated genes.

Testing the Significance of the Clustering
for Ribosomal-Protein Genes
To answer the question “Are two mountains in the VxInsight
map significantly different from each other?” we compared
the empirical distribution of pair-wise correlations in each
mountain, and also the distributions of correlations between
the two mountains. There are three ways clusters could sys-
tematically differ from each other:

1. Expression correlations within each of the two mountains
could be very different from each other and also different
from the intermountain correlations.

2. The correlations might be vaguely similar in each of the
mountains, but their intermountain correlations could be
noticeably different from the correlations in either moun-
tain.

3. The correlations in each mountain could be noticeably dif-
ferent from each other, but the intermountain correlations
could have some intermediate value, such that the inter-
mountain correlations could not be detected as being dif-
ferent from either of the mountains, even if the mountains
were, themselves, statistically different.

The first case corresponds to strongly separated clusters,
the second to weakly separated clusters, and the third case
corresponds to a gradual gradation from one cluster into an-
other. However, there is only one way that the genes can be
incorrectly separated into different groups: that is if all three
groupings are found to be indistinguishable.

If the gene expressions for genes in, and between, the
two mountains were really indistinguishable (the null hy-
pothesis), then analysis of variance (ANOVA) should fail to
detect a significant difference between the means of the three
sets of correlations. We tested a number of clusters using
ANOVA to assure ourselves that the clustering was significant.

Briefly, we started with two nonintersecting gene lists,
GroupA and GroupB. We computed all possible correlations
between the genes in GroupA, all possible correlations be-
tween genes in GroupB, and finally the correlations between
every gene in GroupA with every gene in GroupB. These in-
dividual correlations were transformed to their corresponding
T-statistics, which are directly related to the P values associ-
ated with observing the correlations when the expressions are
not actually correlated. ANOVA was performed to test if the
mean correlations for these three different groups were sig-
nificantly different. Under the null hypothesis, one would
rarely (the ANOVA P value) see large F-statistics from this
analysis. On the other hand, ANOVA should uncover a dif-

ference if the genes in the two VxInsight clusters were cor-
rectly separated into different groups. That is, we expect
ANOVA to yield a very small P value when the expressions for
genes in either mountain are more like the expressions for
genes in the same mountain than they are for genes in the
other mountain. Further, when the correlations between the
two clusters are different from the correlations in at least one
of the mountains, ANOVA should also allow us to reject the
null hypothesis. In either case, we would conclude that the
VxInsight clusters are not artifacts.
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