COS 597c: Topics in Computational Molecular Biology
Lecture 2: September 22, 1999

Lecturer: Mona Singh

Scribe: Robert Phillips *

Sequence Comparison: Global Sequence Alignments

Introduction

In comparisons of biomolecular sequences (i.e., those of DNA, RNA, and protein),
regions of high sequence similarity often indicate significant functional or structural
similarity as well. The same and related molecular structures and mechanisms are
reused and modified during evolution, and thus show up repeatedly within either
a single genome or across the genomes of a wide variety of species. As a result,
sequence comparison is the most commonly used method for inferring structure and
biological function. Of course, sequences can have similar structure and function
without exhibiting sequence similarity.

Sequence comparison is also the first step for many problems in computational biology,
including fragment assembly, evolutionary tree reconstruction and genome analysis.

We will describe a method for detecting sequence similarity based on dynamic pro-
gramming. Dynamic programming is a very useful technique that has many applica-
tions in computer science. Moreover, dynamic programming is used in other areas of
computational biology as well, including in: prediction of RNA secondary structure;
hidden Markov model applications (which are used for building profiles, for example);
and homology-based methods for gene finding.

Before we can proceed further, we must make some definitions.

e alphabet - set of allowable symbols. Examples of biosequence alphabets:
¥={A,C,G,T} (DNA)
¥={A,C,G,U} (RNA)
¥={a,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} (proteins)

! This lecture is adapted from one given by Bonnie Berger at MIT, and is based on the text of
Setubal and Meidanis [2]. Scribe notes are adapted from notes taken by Janet Marques and Russell
Schwartz, also at MIT.

e sequence (or string) - finite succession of characters chosen from an alphabet
e.g., ATCCGAACTTG from the DNA alphabet ¥={A,C,G,T}

e subsequence - sequence obtained from a sequence by removal of characters
e.g., TTT is a subsequence of ATATAT
AAAA is not a subsequence of ATATAT

e substring - subsequence of consecutive characters
e.g., TAC is a substring of ACTACA
TAC is not a substring of ATGAC

e prefir - substring containing the first character of a string, including the empty
string
e.g., in the string ACT, a prefix may be the empty string, A, AC, or ACT

The Alignment Problem

Given two strings of different length, an alignment makes these sequences the same
length through the insertion of gaps. Gaps may be added anywhere within the se-
quences, including at the beginning or the end, but cannot be aligned together.

As an example, take two strings, CGACCTA and CGCCTA. One alignment is as follows:
CGACCTA
CG-CCTA

Here we inserted a space (or gap) to generate a good alignment.

The global alignment problem is to find the “best” alignment according to some
scoring function that measures similarity. A simple scoring function follows; later,
we’ll talk about where more realistic scoring functions for protein sequences come
from.

‘ Column ‘ Score ‘

Match +1
Mismatch -1
Gap -2

Table 1: A simple scoring function

In this simple scoring function, a column containing two identical characters (a match)
would receive a score of 1, a column containing two different characters (mismatch)

would receive a score of -1, and a column containing a gap would receive a score
of -2. (Typically, for protein sequences, the scoring functions are symmetric 20 by
20 substitution matrices, where there is a similarity measure for each pair of amino
acids.)

Using the simple scoring function, in the following example the total score is: 141 —
2-14+1+1=1

c G A CCT
c G - T CT
11 -2 -1 11

How do we find the best global alignment (i.e., the one with the highest score)? Let’s
first consider a brute-force approach:

1. Enumerate all possible alignments.

2. Score each alignment.

3. Choose the alignment with the highest score.

The problem with this approach is that the number of possible alignments is pro-
hibitively large (exponential in the length of the sequences).

The Basic Algorithm

Fortunately, there exists an algorithm that computes the best alignment in O(mn)
time, where m and n are the lengths of the two sequences.?

We will first demonstrate the algorithm through an example. Suppose we want to
know the score of the best alignment of s = AAAC and ¢ = AGC using our simple
scoring function.

Notation: Let s(i) and ¢(7) denote the ith and jth characters of s and ¢, respectively.

Considering just the last column of the alignment, we have only three possibilities:

e The last character of s (C) is aligned with the last character of ¢ (C). In this
case, the score of the best alignment of s and t is equal to the the score of
the best alignment of AAA (the remaining portion of s) and AG (the remaining
portion of ¢), plus 1 for matching the last character.

2Roughly speaking, we evaluate running time by examining the growth rate of higher order terms,
ignoring constants of proportionality and any lower order terms. For example, 100n? + 100n + 100
and 10000n2 + 5n + 100 are both O(n?).

- A G C

-] 0«-24-44 -6

Al 2| 14-14-3

=t

Al 4] 1| 0«-2
=t

Al 6| -3]|-2]|-1
A 4 4

c|-8|-5]-4]|-1

Figure 1: Matrix sim for scoring alignments of s=AAAC and t=AGC. The lower right
element (sim(4,3)) is the most important; it contains the score of the best alignment.

e The last character of s (C) is aligned with a gap. In this case, the score of the
best alignment of s and ¢ is equal to the the score of the best alignment of AAA
(the remaining portion of s) and AGC (all of), minus 2 for inserting a gap.

e The last letter of ¢ (C) is aligned with a gap. In this case, the score of the best
alignment of s and ¢ is equal to the the score of the best alignment of AAAC (all
of s) and AG (the remaining portion of), minus 2 for inserting a gap.

If we know the answers to the three subproblems mentioned above, then we will know
the score of the best alignment between s and ¢. Note that the subproblems consist
of aligning prefixes of s and ¢. We will find and save optimal solutions for all prefixes
of s and t, building up from shorter ones to longer ones. There are five prefixes for s:
empty, A, AA, AAA, and AAAC, and we will refer to these prefixes as the Oth, 1st, 2nd,
3rd and 4th prefixes of s. Likewise there are four prefixes for t: empty, A, AG, and
AGC. The algorithm uses a matriz representation (in this case a 5 X 4 matrix), with
characters of s along the rows and characters of ¢ along the columns (shown in the
Figure 1). We will define sim(i, j) to correspond to the optimal alignment score (the
“similarity”) of the ith prefix of s with the jth prefix of ¢. Thus, the matrix reflects
the similarity scores for all prefixes of s and t.

Looking at the matrix, sim(0, 3) contains the score of the best alignment of the empty
string (Oth prefix of s) with AGC (3rd prefix of), sim(2, 2) contains the best alignment

score for AA (2nd prefix of s) and AG (2nd prefix of ¢). The element sim(4, 3) contains
what we’re looking for: the best alignment score for AAAC and AGC. In general, when
we are aligning sequence s of length m and sequence ¢ of length n, sim(m,n) has the
answer we’re looking for, and we will fill out the entire matrix in order to get this last
score. Each element is determined by our sim function, which takes the following
form (again derived by considering what happens in the last column of the alignment
of the ith prefix of s and the jth prefix of t):

sim(i—1,j—1) £ 1, align s(:) with ¢(j),

+1 for a match, -1 for mismatch
sim(i —1,j5) — 2, align s(i) with a gap
sim(i,j —1) — 2, align t(j) with a gap

sim(i, j) = max

In our array then, in order to compute sim(i,j), we need to have three entries pre-
computed: sim(i — 1,7 — 1), sim(i — 1,7), and sim(i,j — 1). If we compute entries
row by row left to right, we will always have things computed when we need them.

We start by filling out the the 0 row and column: using our scoring function,
an alignment of a single-letter string with a gap results in a score of -2; similarly,
alignment of a two-letter string with a gap results in a score of -4. In general, the
alignment of a string of 7 letters with a gap gives a score of —24, and the 0** row and
column may thus be filled in accordingly (see Figure 1).

Now we have all the information we need to evaluate array element (1,1): sim(1,1)
is the alignment of A and A according to the function:

sim(0,0) £ 1, align s(1) with #(1), (=0+1=1)
stim(1,1) = maz{ sim(0,1) — 2, align s(1) with a gap (= —2 —2 = —4)
sim(1,0) — 2, align #(1) with a gap (= -2 -2 = —4)

The maximum is found at sim(0,0) and evaluates to 1. We place 1 in our array
element and, since the maximum came from element (0,0), we keep track of this (by
“drawing” an arrow pointing to that array element). See Figure 1. We now have the
information required to evaluate sim(1,2) in the same manner:

sim(0,1) £1, align s(1) with £(2), (= -2—-1= —3)
stm(1,2) = maz < sim(0,2) — 2, align s(1) with a gap (= —4 — 2 = —6)
sim(1,1) — 2, align #(2) witha gap (=1—2 = —1)

The maximum is -1 (fill this value in on the matrix) and it came from (1,1), so draw
an arrow pointing to the left, toward element (1,1). Continuing with this process

we obtain the full matrix (with arrows) depicted in the previous figure. The final
alignment score is in element (4,3) and is -1. But how do we reconstruct the alignment
itself? This is where the arrows come in. Start with the final array element and
follow the arrows back. An arrow from (i,7) pointing to element (i — 1,5 — 1) (to
the diagonally upper left) means to align s(:) and ¢(j) with each other. An arrow
pointing upward to (i — 1, j) means to align s(i) with a gap, and an arrow pointing
to the left to (7,5 — 1) means to align ¢(j) with a gap. Continuing through the three
possible arrow paths, we are able to build three possible alignments (with the same
scores):

AAAC
-AGC

AAAC
A-GC

AAAC
AG-C

The algorithm described takes O(mn) time and O(mn) space. There is also a space-
saving version of the algorithm that takes O(m + n) space, but still works in O(mn)
time. See the textbook of Setubal and Meidanis [2] for a description of the space-
saving trick.

References

[1] Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.
48:443-453.

[2] Setubal, J. and Meidanis, J. Introduction to Computational Molecular Biology.
PWS Publishing Company, 1997.

