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Chapter 1

Introduction

Twenty years ago the publication of the papers by Catmull and Clark [4] and Doo and Sabin [5] marked
the beginning of subdivision for surface modeling. Now we can regularly see subdivision used in movie
production (e.g., Geri's Game, A Bug’s Life, and Toy Story 2), appear as a first class citizen in commer-
cial modelers and in be a core technology in game engines.

The basic ideas behind subdivision are very old indeed and can be traced as far back as the late 40s and
early 50s when G. de Rham used “corner cutting” to describe smooth curves. It was only recently though
that subdivision surfaces have found their way into wide application in computer graphics and computer
assisted geometric design (CAGD). One reason for this development is the importance of multiresolution
techniques to address the challenges of ever larger and more complex geometry: subdivision is intricately
linked to multiresolution and traditional mathematical tools such as wavelets.

Constructing surfaces through subdivision elegantly addresses many issues that computer graphics
practitioners are confronted with

e Arbitrary Topology: Subdivision generalizes classical spline patch approaches to arbitrary topol-
ogy. Thisimplies that there is no need for trim curves or awkward constraint management between
patches.

e Scalability: Because of its recursive structure, subdivision naturally accommodates level-of-detall
rendering and adaptive approximation with error bounds. The result are algorithms which can
make the best of limited hardware resources, such as those found on low end PCs.

e Uniformity of Representation: Much of traditional modeling uses either polygonal meshes or
spline patches. Subdivision spans the spectrum between these two extremes. Surfaces can behave
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as if they are made of patches, or they can be treated as if consisting of many small polygons.

e Numerical Stability: The meshes produced by subdivision have many of the nice properties fi-
nite element solvers require. As a result subdivision representations are also highly suitable for
many numerical simulation tasks which are of importance in engineering and computer animation
settings.

e Code Simplicity: Last but not least the basic ideas behind subdivision are simple to implement and
execute very efficiently. While some of the deeper mathematical analyses can get quite involved
this is of little concern for the final implementation and runtime performance.

In this course and its accompanying notes we hope to convince you, the reader, that in fact the above
claims are true!l

The main focus or our notes will be on covering the basic principles behind subdivision; how subdivi-
sion rules are constructed; to indicate how their analysis is approached; and, most importantly, to address
some of the practical issues in turning these ideas and techniques into real applications. As an extra
bonus in this year’s edition of the subdivision course we are including code for triangle and quadrilateral
based subdivision schemes.

The following 2 chapters will be devoted to understanding the basic principles. We begin with some
examples in the curve, i.e., 1D setting. This simplifies the exposition considerably, but still allows us to
introduce all the basic ideas which are equally applicable in the surface setting. Proceeding to the surface
setting we cover a variety of different subdivision schemes and their properties.

With these basics in place we proceed to the second, applications oriented part, covering algorithms
and implementations addressing

e Implementing Subdivision and Multiresolution Surfaces: Subdivision can model smooth sur-
faces, but in many applications one is interested in surfaces which carry details at many levels of
resolution. Multiresolution mesh editing extends subdivision by including detail offsets at every
level of subdivision, unifying patch based editing with the flexibility of high resolution polyhe-
dral meshes. In this part, we will focus on implementation concerns common for subdivision and
multiresolution surfaces based on subdivision.

e Combined Subdivision SchemesThis section will present a class of subdivision schemes called
“Combined Subdivision Schemes.” These are subdivision schemes whose limit surfaces can sat-
isfy prescribed boundary conditions. Every combined subdivision scheme consists of an ordinary
subdivision scheme that operates in the interior of the mesh, and special rules that operate near
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tagged edges of the mesh and take into consideration the given boundary conditions. The limit
surfaces are smooth and they satisfy the boundary conditions. Particular examples of combined
subdivision schemes will be presented and their applications discussed.

e Parameterization, Remeshing, and Compression Using Subdivisio®Bubdivision methods typ-

ically use a simple mesh refinement procedure such as triangle or quadrilateral quadrisection. It-
erating this refinement step starting from a coarse, arbitrary connectivity control mesh generates
semi-regular meshes. However, meshes coming from scanning devices are fully irregular and do
not have semi-regular connectivity. In order to use multiresolution and subdivision based algo-

rithms for such meshes they first need to be remeshed onto semi-regular connectivity. In this
section we show how to use mesh simplification to build a smooth parameterization of dense irreg-
ular connectivity meshes and to convert them to semi-regular connectivity. The method supports
both fully automatic operation as well as user defined point and edge constraints. We also show
how semi-regular meshes can be compressed using a wavelet and zero-tree based algorithm.

e A Variational Approach to Subdivision: Surfaces generated using subdivision have certain or-
ders of continuity. However, it is well known from geometric modeling that high quality surfaces
often require additional optimization (fairing). In the variational approach to subdivision, refined
meshes are not prescribed by static rules, but are chosen so as to minimize some energy functional.
The approach combines the advantages of subdivision (arbitrary topology) with those of variational
design (high quality surfaces). This section will describe the theory of variational subdivision and
highly efficient algorithms to construct fair surfaces.

e Subdivision Surfaces in the Making of Geri's Game, A Bug’s Life, and Toy Story 2:Geri’s
Game is a 3.5 minute computer animated film that Pixar completed in 1997. The film marks the
first time that Pixar has used subdivision surfaces in a production. In fact, subdivision surfaces
were used to model virtually everything that moves. Subdivision surfaces went on to play a major
role the feature films 'A Bug's Life’ and 'Toy Story 2’ from Disney/Pixar. This section will
describe what led Pixar to use subdivision surfaces, discuss several issues that were encountered
along the way, and present several of the solutions that were developed.

Beyond these Notes

One of the reasons that subdivision is enjoying so much interest right now is that it is very easy to
implement and very efficient. In fact it is used in many computer graphics courses at universities as a
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homework exercise. The mathematical theory behind itis very beautiful, but also very subtle and at times
technical. We are not treating the mathematical details in these notes, which are primarily intended for
the computer graphics practitioners. However, for those interested in the theory there are many pointers
to the literature.

These notes as well as other materials such as presentation slides, applets and code are available on
the web atttp://www.mrl.nyu.edu/dzorin/sig00course/ and all readers are encouraged
to explore the online resources.
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Chapter 2

Foundations I: Basic Ideas

Peter Schoder, Caltech

In this chapter we focus on the 1D case to introduce all the basic ideas and concepts before going
on to the 2D setting. Examples will be used throughout to motivate these ideas and concepts. We
begin initially with an example from interpolating subdivision, before talking about splines and their
subdivision generalizations.

LU

Figure 2.1:Example of subdivision for curves in the plane. On the left 4 points connected with straight
line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old
points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision
the curve starts to become rather smooth.
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2.1 The ldea of Subdivision

We can summarize the basic idea of subdivision as follows:
Subdivision defines a smooth curve or surface as the limit of a sequence of successive re-
finements.
Of course this is a rather loose description with many details as yet undetermined, but it captures the
essence.

Figure 2.1 shows an example in the case of a curve connecting some number of initial points in the
plane. On the left we begin with 4 points connected through straight line segments. Next to it is a refined
version. This time we have the original 4 points and additionally 3 more points “inbetween” the old
points. Repeating the process we get a smoother looking piecewise linear curve. Repeating once more
the curve starts to look quite nice already. It is easy to see that after a few more steps of this procedure
the resulting curve would be as well resolved as one could hope when using finite resolution such as that
offered by a computer monitor or a laser printer.
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Figure 2.2: Example of subdivision for a surface, showing 3 successive levels of refinement. On the
left an initial triangular mesh approximating the surface. Each triangle is split into 4 according to a
particular subdivision rule (middle). On the right the mesh is subdivided in this fashion once again.

An example of subdivision for surfaces is shown in Figure 2.2. In this case each triangle in the original
mesh on the left is split into 4 new triangles quadrupling the number of triangles in the mesh. Applying
the same subdivision rule once again gives the mesh on the right.

18



Both of these examples show what is known as interpolating subdivision. The original points remain
undisturbed while new points are inserted. We will see below that splines, which are generally not
interpolating, can also be generated through subdivision. Albeit in that case new points are arseérted
old points are moved in each step of subdivision.

How were the new points determined? One could imagine many ways to decide where the new points
should go. Clearly, the shape and smoothness of the resulting curve or surface depends on the chosen
rule. Here we list a number of properties that we might look for in such rules:

¢ Efficiency: the location of new points should be computed with a small number of floating point
operations;

e Compact support: the region over which a point influences the shape of the final curve or surface
should be small and finite;

e Local definition: the rules used to determine where new points go should not depend on “far
away” places;

e Affine invariance: if the original set of points is transformed, e.g., translated, scaled, or rotated,
the resulting shape should undergo the same transformation;

e Simplicity: determining the rules themselves should preferably be an offline process and there
should only be a small number of rules;

e Continuity: what kind of properties can we prove about the resulting curves and surfaces, for
example, are they differentiable?

For example, the rule used to construct the curve in Figure 2.1 computed new points by taking a weighted
average of nearby old points: two to the left and two to the right with weight§®-1,9,9, —1) respec-
tively (we are ignoring the boundaries for the moment). It is very efficient since it only involves 4
multiplies and 3 adds (per coordinate); has compact support since only 2 neighbors on either side are
involved; its definition is local since the weights do not depend on anything in the arrangement of the
points; the rule is affinely invariant since the weights used sum to 1; it is very simple since only 1 rule is
used (there is one more rule if one wants to account for the boundaries); finally the limit curves one gets
by repeating this process ad infinitum &re

Before delving into the details of how these rules are derived we quickly compare subdivision to other
possible modeling approaches for smooth surfaces: traditional splines, implicit surfaces, and variational
surfaces.
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1. Efficiency: Computational cost is an important aspect of a modeling method. Subdivision is
easy to implement and is computationally efficient. Only a small number of neighboring old
points are used in the computation of the new points. This is similar to knot insertion methods
found in spline modeling, and in fact many subdivision methods are simply generalization of knot
insertion. On the other hand implicit surfaces, for example, are much more costly. An algorithm
such as marching cubes is required to generate the polygonal approximation needed for rendering.
Variational surfaces can be even worse: a global optimization problem has to be solved each time
the surface is changed.

2. Arbitrary topology: Itis desirable to build surfaces of arbitrary topology. This is a great strength
of implicit modeling methods. They can even deal witingingtopology during a modeling
session. Classic spline approaches on the other hand have great difficulty with control meshes of
arbitrary topology. Here, “arbitrary topology” captures two properties. First, the topological genus
of the mesh and associated surface can be arbitrary. Second, the structure of the graph formed by
the edges and vertices of the mesh can be arbitrary; specifically, each vertex may be of arbitrary
degree.

These last two aspects are related: if we insist on all vertices having degree 4 (for quadrilateral)
control meshes, or having degree 6 (for triangular) control meshes, the Euler characteristic for a
planar graph tells us that such meshes can only be constructed if the overall topology of the shape
is that of the infinite plane, the infinite cylinder, or the torus. Any other shape, for example a
sphere, cannot be built from a quadrilateral (triangular) control mesh having vertices of degree 4
(6).

When rectangular spline patches are used in arbitrary control meshes, enforcing higher order con-
tinuity at extraordinary vertices becomes difficult and considerably increases the complexity of the
representation (see Figure 2.3 for an example of points not having valence 4). Implicit surfaces
can be of arbitrary topological genus, but the genus, precise location, and connectivity of a surface
are typically difficult to control. Variational surfaces can handle arbitrary topology better than
any other representation, but the computational cost can be high. Subdivision can handle arbitrary
topology quite well without losing efficiency; this is one of its key advantages. Historically sub-
division arose when researchers were looking for ways to address the arbitrary topology modeling
challenge for splines.

3. Surface features: Often it is desirable to control the shape and size of features, such as creases,
grooves, or sharp edges. Variational surfaces provide the most flexibility and exact control for cre-
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Figure 2.3:A mesh with two extraordinary vertices, one with valence 6 the other with valence 3. In the
case of quadrilateral patches the standard valence is 4. Special efforts are required to guarantee high
order of continuity between spline patches meeting at the extraordinary points; subdivision handles such
situations in a natural way.

ating features. Implicit surfaces, on the other hand, are very difficult to control, since all modeling
is performed indirectly and there is much potential for undesirable interactions between different
parts of the surface. Spline surfaces allow very precise control, but it is computationally expen-
sive and awkward to incorporate features, in particular if one wants to do so in arbitrary locations.
Subdivision allows more flexible controls than is possible with splines. In addition to choosing

locations of control points, one can manipulate the coefficients of subdivision to achieve effects
such as sharp creases or control the behavior of the boundary curves.

4. Complex geometry: For interactive applications, efficiency is of paramount importance. Because
subdivision is based on repeated refinement it is very straightforward to incorporate ideas such
as level-of-detail rendering and compression for the internet. During interactive editing locally
adaptive subdivision can generate just enough refinement based on geometric criteria, for example.
For applications that only require the visualization of fixed geometry, other representations, such
as progressive meshes, are likely to be more suitable.

Since most subdivision techniques used today are based upon and generalize splines we begin with
a quick review of some basic facts of splines which we will need to understand the connection between
splines and subdivision.
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2.2 Review of Splines

2.2.1 Piecewise Polynomial Curves
Splines are piecewise polynomial curves of some chosen degree. In the case of cubic splines, for exam-
ple, each polynomial segment of the curve can be written as
x(t) = agtd+at?>+alt+a
y(t) = b5t +bht? + bt + b,
where(a,b) are constant coefficients which control the shape of the curve over the associated segment.

This representation uses monomiafd t€,t1,t%), which are restricted to the given segment, as basis
functions.

1.0+

0.5+

0.0 1

-0.5 T T T T T T T |
-4 -3 -2 -1 0 1 2 3 4

Figure 2.4:Graph of the cubic B-spline. It is zero for the independent parameter outside the interval
[—2,2].

Typically one wants the curve to have some order of continuity along its entire length. In the case of
cubic splines one would typically wa@? continuity. This places constraints on the coefficigas)
of neighboring curve segments. Manipulating the shape of the desired curves through these coefficients,
while maintaining the constraints, is very awkward and difficult. Instead of using monomials as the basic
building blocks, we can write the spline curve as a linear combination of stBftgplines each with a
coefficient known as aontrol point

X(t) = inB(t—i)
yt) = Y yiB-i).

The new basis functioB(t) is chosen in such a way that the resulting curves are always continuous and
that the influence of a control point is local. One way to ensure higher order continuity is to use basis
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functions which are differentiable of the appropriate order. Since polynomials themselves are infinitely
smooth, we only have to make sure that derivatives match at the points where two polynomial segments
meet. The higher the degree of the polynomial, the more derivatives we are able to match. We also
want the influence of a control point to be maximal over a region of the curve which is close to the
control point. Its influence should decrease as we move away along the curve and disappear entirely at
some distance. Finally, we want the basis functions to be piecewise polynomial so that we can represent
any piecewise polynomial curve of a given degree with the associated basis functions. B-splines are
constructed to exactly satisfy these requirements (for a cubic B-spline see Figure 2.4) and in a moment
we will show how they are constructed.

The advantage of using this representation rather than the earlier one of monomials, is that the conti-
nuity conditions at the segment boundaries are already “hardwired” into the basis functions. No matter
how we move the control points, the spline curve will always maintain its continuity, for exa@fpie,
the case of cubic B-splinésFurthermore, moving a control point has the greatest effect on the part of
the curve near that control point, and no effect whatsoever beyond a certain range. These features make
B-splines a much more appropriate tool for modeling piecewise polynomial curves.

Note: When we talk about curves, it is important to distinguish the curve itself and the graphs of the
coordinate functions of the curve, which can also be thought of as curves. For example, a curve can
be described by equationét) = sin(t), y(t) = coqt). The curve itself is a circle, but the coordinate
functions are sinusoids. For the moment, we are going to concentrate on representing the coordinate
functions.

2.2.2 Definition of B-Splines

There are many ways to derive B-splines. Here we choose repeated convolution, since we can see from
it directly how splines can be generated through subdivision.

We start with the simplest case: piecewise constant coordinate functions. Any piecewise constant
function can be written as

X(t) = 3 xBb(t),

IThe differentiability of the basis functions guarantees the differentiability of the coordinate functions of the curve. How-
ever, it does not guarantee the geometric smoothness of the curve. We will return to this distinction in our discussion of
subdivision surfaces.
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whereBy(t) is the box function defined as

Bot) = 1 if 0<t<1

= 0 otherwise

and the functiond}(t) = Bo(t — i) are translates do(t). Furthermore, let us represent the continuous
convolution of two functiond (t)andg(t) with

(fog)t) = [ f(9at—9ds

A B-spline basis function of degraecan be obtained by convolving the basis function of degreel
with the boxBo(t).2 For example, the B-spline of degree 1 is defined as the convoluti@g(bf with
itself

Ba(t) = / Bo(S)Bo(t — )ds

Graphically (see Figure 2.5), this convolution can be evaluated by sliding one box function along the
coordinate axis from minus to plus infinity while keeping the second box fixed. The value of the con-
volution for a given position of the moving box is the area under the product of the boxes, which is just
the length of the interval where both boxes are non-zero. At first the two boxes do not have common
support. Once the moving box reaches 0, there is a growing overlap between the supports of the graphs.
The value of the convolution grows withuntil t = 1. Then the overlap starts decreasing, and the value
of the convolution decreases down to zerb-at2. The functiorB(t) is the linear hat function as shown
in Figure 2.5.

We can compute the B-spline of degree 2 convolii@t) with the boxByp(t) again

Ba(t) / B1(S)Bo(t — S)ds

In this case, the resulting curve consists of three quadratic segments defined on if@etyal4,2) and
(2,3). In general, by convolvingtimes, we can get a B-spline of degilee

Bi(t) = / Bi_1(S)Bo(t — s)ds

Defining B-splines in this way a number of important properties immediately follow. The first concerns
the continuity of splines

2Thedegreeof a polynomial is the highest order exponent which occurs, whilettier counts the number of coefficients
and is 1 larger. For example, a cubic curve is of degree 3 and order 4.
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Figure 2.5:The definition of degree 1 B-Spling(B) (right side) through convolution ofdt) with itself
(left side).

Theorem 1 If f (t) is Ck-continuous, thetiBy ® f)(t) is C<*1-continuous.

This is a direct consequence of convolution with a box function. From this it follows that the B-spline of
degreen is C"* continuous because the B-spline of degree@isontinuous.

2.2.3 Refinability of B-splines

Another remarkable property of B-splines is that they obeyefinement equation This is the key
observation to connect splines and subdivision. The refinement equation for B-splines of ldisgree
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given by

lelf( )B|2t K). 2.1)

In other words, the B-spline of degréecan be written as a linear combination tedinslated (k) and
dilated (2t) copies of itself. For a function to be refinable in this way is a rather special property. As an
example of the above equation at work consider the hat function shown in Figure 2.5. Itis easy to see that
it can be written as a linear combination of dilated hat functions with weidht® 1,1/2) respectively.

The property of refinability is the key to subdivision and so we will take a moment to prove it. We
start by observing that the box function, i.e., the B-spline of degree 0 can be written in terms of dilates
and translates of itself

Bo(t) = Bo(2t) + Bo(2t — 1), (2.2)

which is easily checked by direct inspection. Recall that we defined the B-spline of degree
[

®Bo = Q)(Bo(2t) + Bo(2t — 1)) (2.3)

i=0
This expression can be “multiplied” out by using the following properties of convolution for functions

f(t), g(t), andh(t)
f)@(gt)+ht) = fH)eglt)+ f(t)®h(t) linearity
ft—i)®glt—k) = mit—i—Kk) time shift
f(2)@g2t) = Im(2) time scaling
wherem(t) = f(t) ®g(t). These properties are easy to check by substituting the definition of convolution

and amount to simple change of variables in the integration.
For example, in the case Bf we get

Bi(t) = Bo(t)®Bo(t)
= (Bo(2t) +Bo(2t — 1)) ® (Bo(2t) + Bo(2t — 1))
= Bo(2t) ®Bo(2t) +Bo(2t) ® Bo 2t —1)+Bo(2t — 1) ® Bo(2t) + Bo(2t — 1) ® Bo(2t — 1)

(
= %81(2t)+;81(2t 1)+ 281(2t 1)+%Bl(2t_1_1)
— %(Bl(Zt)—1—281(2t—1)—|-|31(2t—2))

e s
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The general statement for B-splines of dedraew follows from the binomial theorem

(X+y)*t = :(i (' T(l) K1k

with Bo(2t) in place ofx andBg(2t — 1) in place ofy.

2.2.4 Refinement for Spline Curves

With this machinery in hand let’s revisit spline curves. Let

X(t) i
y(t) = [ y(t) ] ZIZPiBKt)

be such a spline curve of degrewith control points(x;,yi)" = pi € R%. Since we don’t want to worry
about boundaries for now we leave the indexi setspecified. We will also drop the subscriggince the
degree, whatever it might be, is fixed for all our examples. Due to the definitiBi{tf= B(t —i) each
control point exerts influence over a small part of the curve with parameter vaduigs +1].

Now considem, the vector of control points of a given curve:

p-2
p-1

P1
P2

and the vectoB(t), which has as its elements the translates of the fun&ias defined above
B(t)y=| ... B(t+2) B(t+1) B(t) B(t—1) B(t—2)

In this notation we can denote our curveBi$)p.
Using the refinement relation derived earlier, we can rewrite each of the eleméhis tdrms of its
dilates

B(zt)z[... B(2t+2) B(2t+1) B(2) B(2-1) B(2t—2) ]
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using a matrixSto encode the refinement equations

The entries oS are given by Equation 2.1

1/14+1
Szi+k,i=S<=§( K )

The only non-zero entries in each column are the weights of the refinement equation, while successive
columns are copies of one another save for a shift down by two rows.
We can use this relation to rewripét)

y(t) =B(H)p = B(2)p.

It is still the same curve, but described with respect to dilated B-splines, i.e., B-splines whose support is
half as wide and which are spaced twice as dense. We performed a change from the @dthésithe

new basiB(2t) and concurrently changed the old control popt® the appropriate new control points

. This process can be repeated

v = B
- B@p' = B

= B@pl = B@)Ip°,
from which we can define the relationship between control points at different levels of subdivision
pltt =g,

whereSis our infinite subdivision matrix.
Looking more closely at one componentof our control points we see that

pltt= ZS,I pl.

To find out exactly whicls is affecting which term, we can divide the above into odd and even entries.
For the odd entries we have

Py = ZSZiJrl,I pl = Zsz(i—l)+l p}
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and for the even entries we have
Pyt = ZSZLI pl = Zsz(i—l) pl.

From which we essentially get two different subdivision rules one for theenamcontrol points of the
curve and one for the neadd control points. As examples of the above, let us consider two concrete
cases. For piecewise linear subdivision, the basis functions are hat functions. The odd coeffici%nts are
and%, and a lone 1 for the even point. For cubic splines the odd coefficients turn ou%tarhiazl, while
the even coefficients arg ¢, and3.

Another way to look at the distinction between even and odd is to notice that odd points gtelrel
are newly inserted, while even points at leyel 1 correspond directly to the old points from levjel
In the case of linear splines the even points are in facs#meat level j + 1 as they were at levgl.
Subdivision schemes that have this property will later be catiggtpolating since points, once they
have been computed, will never move again. In contrast to this consider cubic splines. In that case even
points at levelj + 1 are local averages of points at leyedo thatpgrl #* p,J Schemes of this type will
later be callechpproximating

2.2.5 Subdivision for Spline Curves

In the previous section we saw that we can refine the control point sequence for a given spline by multi-
plying the control point vectop by the matrixS, which encodes the refinement equation for the B-spline
used in the definition of the curve. What happens if we keep repeating this process over and over, gen-
erating ever denser sets of control points? It turns out the control point sequence converges to the actual
spline curve. The speed of convergence is geometric, which is to say that the difference between the
curve and its control points decreases by a constant factor on every subdivision step. Loosely speaking
this means that the actual curve is hard to distinguish from the sequence of control points after only a
few subdivision steps.

We can turn this last observation into an algorithm and the core of the subdivision paradigm. Instead
of drawing the curve itself on the screen we draw the control polygon, i.e., the piecewise linear curve
through the control points. Applying the subdivision matrix to the control points defines a sequence of
piecewise linear curves which quickly converge to the spline curve itself.

In order to make these observations more precise we need to introduce a little more machinery in the
next section.
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2.3 Subdivision as Repeated Refinement

2.3.1 Discrete Convolution

The coefficientss, of the B-spline refinement equation can also be derived from another perspective,
namely discrete convolution. This approach mimics closely the definition of B-splines through continu-
ous convolution. Using this machinery we can derive and check many useful properties of subdivision
by looking at simple polynomials.

Recall that the generating function of a sequesicis defined as

Al2) = Zakzk,

whereA(z) is theztransform of the sequen@g. This representation is closely related to the discrete
Fourier transform of a sequence by restricting the argurnemthe unit circlez= exp(i0). For the case
of two coefficient sequenceg andby their convolution is defined as

G = (a®b)k =} ak—nbn.
n

In terms of generating functions this can be stated succinctly as

which comes as no surprise since convolution in the time domain is multiplication in the Fourier domain.

The main advantage of generating functions, and the reason why we use them here, is that manip-
ulations of sequences can be turned into simple operations on the generating functions. A very useful
example of this is the next observation. Suppose we have two functions that each satisfy a refinement
equation

f(t) = Zakf(Zt—k)
glt) = Zbkg(Zt—k)-

In that case the convolutidm= f ® g of f andg also satisfies a refinement equation
h(t) = chh(Zt -k,
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whose coefficientsy are given by the convolution of the coefficients of the individual refinement equa-
tions

1
Ckzélzak—ibi-

With this little observation we can quickly find the refinement equation, and thus the coefficients of the
subdivision matrixS, by repeated multiplication of generating functions. Recall that the box function
Bo(t) satisfies the refinement equati@j(t) = Bo(2t) + Bo(2t —1). The generating function of this
refinement equation i&(z) = (1+ z) since the only non-zero terms of the refinement equation are those
belonging to indices 0 and 1. Now recall the definition of B-splines of delgree

|
Bi(t) = @) Bo(b),
k=0

from which we immediately get the associated generating function

S2) = 2—1|(1+z)'+1.

The valuess used for the definition of the subdivision matrix are simply the coefficients of the various
powers ofzin the polynomialS(z)
[+1
(i)

where we used the binomial theorem to exp&(g). Note how this matches the definition §f in
Equation 2.1.

Recall Theorem 1, which we used to argue that B-splines of deggieaC" 1 continuous. That same
theorem can now be expressed in terms of generating functions as follows

1 141

S(Z)—EZO

k

Theorem 2 If S(z) defines a convergent subdivision scheme yieldin§-eddtinuous limit function then
(14 2)(2) defines a convergent subdivision scheme with'@ontinuous limit functions.

We will put this theorem to work in analyzing a given subdivision scheme by peeling off as many fac-
tors of%(l+ z) as possible, while still being able to prove that the remainder converges to a continuous
limit function. With this trick in hand all we have left to do is establish criteria for the convergence of
a subdivision scheme to a continuous function. Once we can verify such a condition for the subdivi-
sion scheme associated with B-spline control points we will be justified in drawing the piecewise linear
approximations of control polygons as approximations for the spline curve itself. We now turn to this
task.
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2.3.2 Convergence of Subdivision

There are many ways to talk about the convergence of a sequence of functions to a limit. One can use
different norms and different notions of convergence. For our purposes the simplest form will suffice,
uniform convergence.

We say that a sequence of functiofjgdefined on some intervéd, b] C R converges uniformlyo a
limit function f if for all € > 0 there exists ang > 0 such that for alh > ng

f(t)— fn(t .
max| (1) — fa(t)] <

Or in words, as of a certain indeRrg) all functions in the sequence “live” within ansized tube around
the limit function f. This form of convergence is sufficient for our purposes and it has the nice prop-
erty that if a sequence of continuous functions converges uniformly to some limit furfGtibiat limit
function is itself continuous.

For later use we introduce some norm symbols

fOI = sgmfﬁﬂ
Ipll sup| pi|
|
S| = su ,
ISl = supy IS«

which are compatible in the sense that, for examije|| < ||S||||p||-

The sequence of functions we want to analyze now are the control polygons as we refine them with
the subdivision rulé&s. Recall that the control polygon is the piecewise linear curve through the control
pointsp! at level j. Independent of the subdivision ruave can use the linear B-splines to define the
piecewise linear curve through the control point$ag) = B, (2/t)p!.

One way to show that a given subdivision scheB®nverges to a continuous limit function is to
prove that (1) the limit

P (t) = jlmpi (t)
exists for allt and (2) that the sequen@d(t) converges uniformly. In order to show this property we
need to make the assumption that all rows of the m&gxm to 1, i.e., the odd and even coefficients of
the refinement relation separately sum to 1. This is a reasonable requirement since it is needed to ensure
the affine invariance of the subdivision process, as we will later see. In matrix notation this$heaths
or in other words, the vector of all 1’s is an eigenvector of the subdivision matrix with eigenvalue 1. In
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terms of generating functions this meajs-1) = 0, which is easily verified for the generating functions
we have seen so far.

Recall that the definition of continuity in the function setting is based on differences. Wg5ay
is continuous aty if for any € > 0 there exists & > 0 so that|f(tp) — f(t)| < € as long asto —t| < d.
The corresponding tool in the subdivision setting is the difference between two adjacent control points
pijJrl — pij = (ApY);. We will show that if the differences between neighboring control points shrink fast
enough, the limit curve will exist and be continuous:

Lemma 3 If ||Ap!|| < cy! for some constant & 0 and a shrinkage factod <y < 1 for all j > jo >0
then P (t) converges to a continuous limit functior? @).

Proof: Let Sbe the subdivision rule at hang! = $° andS; be the subdivision rule for B-splines of
degree 1. Notice that the rows $f S; sum to 0

(S—S)1=Sl-§1=1-1=0.

This implies that there exists a matiix such thatS— S = DA, whereA computes the difference of
adjacent element&);j = —1, (A)iji+1 = 1, and zero otherwise. The entriesfare given adjj =

— 2|j<:i (S—S)ik- Now consider the difference between two successive piecewise linear approximations
of the control points

IPIFL) —Pit)]| = [Bu(2tit)pitt - By (2it)pl]|
= [By(2")Sp! — By (2 ) Sp]|
IB1(2 1) (S—Su)p’|
)

< |B1(21*1t)|[||D2p!|
< [ID][ap!]
< |D|ey.

This implies that the telescoping sup(t) + 5} _, (P —P¥)(t) converges to a well defined limit func-
tion since the norms of each summand are bounded by a constant times a geometyic tetr®>(t)
asj — o, then

" IDle,
IP?(6) P ()] < 7 yv,

since the latter is the tail of a geometric series. This implies uniform convergence and thus continuity of
P>(t) as claimed.
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How do we check such a condition for a given subdivision scheme? Suppose we had a derived
subdivision schemP for the differences themselves

Aplt=Dapl,
defined as the scheme that satisfies
AS= DA.

Or in words, we are looking for difference scheme Buch that taking differences after subdivision is
the same as applying the difference scheme to the differences.Dalesys exist? The answer is yes
if Sis affinely invariant, i.e.S(—1) = 0. This follows from the following argument. Multiplyin§ by A
computes a matrix whose rows are differences of adjacent ro&s3imce odd and even numbered rows
of Seach sum to one, the rows A must each sum to zero. Now the existence of a méirsuch that
AS= DA follows as in the argument above.

Given this difference scheni2 all we would have to show is that some power- O of D has norm
less than 1)D™|| =y < 1. In that casé/Ap! || < c(y*™)i. (We will see in a moment that the extra degree
of freedom provided by the parametaris needed in some cases.)

As an example, let us check this condition for cubic B-splines. RecalB(a = 3(1+2)%, i.e.,

p%itrll = %(4pij+4pij+l)
Pt = S(Ra+6n 4Ly
Taking differences we have
@7 s = Py Pkt =(-ply -2 +30y)
= 5(3(pLa— B+ 106] — By)) = (30T + 18P ),

and similarly for the odd entries so tafz) = 3 (1+2)%, from which we conclude thgD|| = 3, and that
the subdivision scheme for cubic B-splines converges uniformly to a continuous limit function, namely
the B-spline itself.

Another example, which is not a spline, is the so called 4 point scheme [6]. It was used to create
the curve in Figure 2.1, which is interpolating rather than approximating as is the case with splines. The
generating function for the 4 point scheme is

S(z) = 1—16(—2’3 +4z72-7 Y1424
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Recall that each additional factor§)¢1+ z) in the generating function increases the order of continuity of
the subdivision scheme. If we want to show that the limit function of the 4 point scheme is differentiable
we need to show th%(—f3+4fz — 7z (1+ 28 converges to a continuous limit function. This in
turn requires tha (2) = §(—z 3+ 4z 2 -z 1)(1+ 2)? satisfy a norm estimate as before. The rowBof
have non-zero entries 6, 1), and(=, 2, 1) respectively. ThugD|| = 1, which is not strong enough.
However, with a little bit more work one can show thi@?|| = %, so that indeed the 4 point scheme is
cl.
In general, the difficult part is to find a set of coefficients for which subdivision converges. There
is no general method to achieve this. Once a convergent subdivision scheme is found, one can always

obtain a desired order of continuity by convolving with the box function.

2.3.3 Summary

So far we have considered subdivision only in the context of splines where the subdivision rule, i.e., the
coefficients used to compute a refined set of control points, was fixed and everywhere the same. There
is no pressing reason for this to be so. We can create a variety of different curves by manipulating the
coefficients of the subdivision matrix. This could be done globally or locally. I.e., we could change the
coefficients within a subdivision level and/or between subdivision levels. In this regard, splines are just
a special case of the more general class of curves, subdivision curves. For example, at the beginning of
this chapter we briefly outlined an interpolating subdivision method, while spline based subdivision is
approximating rather than interpolating.

Why would one want to draw a spline curve by means of subdivision? In fact there is no sufficiently
strong reason for using subdivision in one dimension and none of the commercial line drawing packages
do so, but the argument becomes much more compelling in higher dimensions as we will see in later
chapters.

In the next section we use the subdivision matrix to study the behavior of the resulting curve at a point
or in the neighborhood of a point. We will see that it is quite easy, for example, to evaluate the curve
exactly at a point, or to compute a tangent vector, simply from a deeper understanding of the subdivision
matrix.

2.4 Analysis of Subdivision

In the previous section we have shown that uniform spline curves can be thought of as a special case of
subdivision curves. So far, we have seen only examples for which we use a fixed set of coefficients to
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compute the control points everywhere. The coefficients define the appearance of the curve, for example,
whether it is differentiable or has sharp corners. Consequently it is possible to control the appearance of
the curve by modifying the subdivision coefficients locally. So far we have not seen a compelling reason
to do so in the 1D setting. However, in the surface setting it will be essential to change the subdivision
rule locally around extraordinary vertices to ensure maximal order of continuity. But before studying this
guestion we once again look at the curve setting first since the treatment is considerably easier to follow
in that setting.

To study properties such as differentiability of the curve (or surface) we need to understand which
of the control points influences the neighborhood of the point of interest. This notion is captured by the
concept of invariant neighborhoods to which we turn now.

2.4.1 Invariant Neighborhoods

Suppose we want to study the limit curve of a given subdivision scheme in the vicinity of a particular
control point® To determindocal properties of a subdivision curve, we do not need the whole infinite
vector of control points or the infinite matrix describing subdivision of the entire curve. Differentiability,
for example, is a local property of a curve. To study it we need consider only an arbitrarily small piece
of the curve around the origin. This leads to the question of which control points influence the curve in
the neighborhood of the origin?

As a first example consider cubic B-spline subdivision. There is one cubic segment to the left of the
origin with parameter valuese [—1,0] and one segment to the right with parameter rang€go0, 1].
Figure 2.6 illustrates that we need 5 control points at the coarsest level to reach any point of the limit
curve which is associated with a parameter value betwekmnd 1, no matter how close it is to the
origin. We say that thevariant neighborhoodas size 5. This size depends on the number of non-zero
entries in each row of the subdivision matrix, which is 2 for odd points and 3 for even points. The latter
implies that we need one extra control point to the left-Gfand one to the right of 1.

Another way to see this argument is to consider the basis functions associated with a given subdivision
scheme. Once those are found we can find all basis functions overlapping a region of interest and their
control points will give us the control set for that region. How do we find these basis functions in the set-
ting when we don’t necessarily produce B-splines through subdivision? The argument is straightforward

SHere and in the following we assume that the point of interest is the origin. This can always be achieved through renum-
bering of the control points.
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Figure 2.6:In the case of cubic B-spline subdivision the invariant neighborhood is of size 5. It takes
5 control points at the coarsest level to determine the behavior of the subdivision limit curve over the
two segments adjacent to the origin. At each level we need one more control point on the outside of
the interval te [—1,1] in order to continue on to the next subdivision level. 3 initial control points for
example would not be enough.

and also applies to surfaces. Recall that the subdivision operator is linear, i.e.,
Pit) = B1(2't)Ip°
= &&mg<zwmw)
|
= 5 pBi2)I(e)°
|

= Tl

In this expressiorg? stands for the vector consisting of all Os except a single 1 in poditidm other
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words the final curve is always a linear combination with weigjﬁtef fundamental solutions

lim ¢/ (t) = i(t).

oo
If we used the same subdivision weights throughout the domain it is easy to sefg(that ¢(t —
i), i.e., there is a single functio@i(t) such that all curves produced through subdivision from some
initial sequence of pointgP are linear combinations of translatesdt). This function is called the
fundamental solution of the subdivision scheme. Questions such as differentiability of the limit curve
can now be studied by examining this one function

d(t) = lim S(eo)°.

j—e

For example, we can read off from the support of this function how far the influence of a control point
will be felt. Similarly, the shape of this function tells us something about how the curve (or surface) will
change when we pull on a control point. Note that in the surface case the rules we apply will depend on
the valence of the vertex in question. In that case we won'’t get only a single fundamental solution, but a
different one for each valence. More on this later.

With this we can revisit the argument for the size of the invariant neighborhood. The basis functions
of cubic B-spline subdivision have support width of 4 intervals. If we are interested in a small open
neighborhood of the origin we notice that 5 basis functions will overlap that small neighborhood. The
fact that the central 5 control points control the behavior of the limit curve at the origin holds independent
of the level. With the central 5 control points at leyielve can compute the central 5 control points at
level j + 1. This implies that in order to study the behavior of the curve at the origin all we have to
analyze is a small 5 5 subblock of the subdivision matrix

j+1

i 1610 0)\/p,
ptt 04 400 p,
pyt :% 01610 P}
pi*t 00 4 40 pl
pitt 00161 P}

The 4 point subdivision scheme provides another example. This time we do not have recourse to
splines to argue the properties of the limit curve. In this case each basis function has a support ranging
over 6 intervals. An easy way to see this is to start with the sequeficee., a single 1 at the origin
surrounded by zeros. Repeatedly applying subdivision we can see that no points outside the original
[—3,3] interval will become non-zero. Consequently for the invariant neighborhood of the origin we
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Figure 2.7:In the case of the 4 point subdivision rule the invariant neighborhood is of size 7. It takes 7
control points at the coarsest level to determine the behavior of the subdivision limit curve over the two
segments adjacent to the origin. One extra point %\tsmeeded to computéfbl. The other is needed
to compute é)*l, which requires @ Two extra points on the left and right result in a total of 7 in the
invariant neighborhood.

need to consider 3 basis functions to the left, the center function, and 3 basis functions to the right. The
4 point scheme has an invariant neighborhood of 7 (see Figure 2.7). In this case the local subdivision
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matrix is given by

plyt -1 9 9 -1 0 0 O plyt
pltt 0O 0 16 0 0 0 O pltt
plit 0 -1 9 9 -1 0 0 plit
j+1 1 j+1
it == 0 0o 0 16 0 0 O P}
j+1 16 j+1
Y] o 0 -2 9 9 -1 O Py
pytt 0O 0 0 0 16 0 O pytt
pit 0 0 0 -1 9 9 -1 pit

Since the local subdivision matrix controls the behavior of the curve in a neighborhood of the origin,
it comes as no surprise that many properties of curves generated by subdivision can be inferred from
the properties of the local subdivision matrix. In particular, differentiability properties of the curve are
related to the eigen structure of the local subdivision matrix to which we now turn. From now on the
symbolSwill denote thelocal subdivision matrix.

2.4.2 Eigen Analysis

Recall from linear algebra that agenvectoix of the matrixM is a non-zero vector such thistx = Ax,
where) is a scalar. We say thatis theeigenvaluecorresponding to the right eigenvectar

Assume the local subdivision mati®has sizen x n and has real eigenvectaxg, X1, ... ,Xn_1, Which
form a basis, with corresponding real eigenvaldgs> A1 > ... > An_1. For example, in the case of
cubic splinesn=5 and

()\0,7\1,)\2,)\3,)\4) = (1,%,%,%,%)
1 -1 1 10
1 -1 2 oo
(Xo,Xl,Xz,Xg,X4) = 1 0 _lil 00
1 1 Z 0o
1 1 1 01



Given these eigenvectors we have

Mo O O O O
0O y 0O 0 O
S(Xo,X1,X2,X3,Xa) = (Xo,X1,X2,X3,X4)] O O A, O O
0O 0 0 A3 O
0 0 0 0 M\
SX = XD
X"1sXx = D.

The rows%; of X1 are called left eigenvectors since they sati&f$ = A%, which can be seen by
multiplying the last equality wittX — on the right.

Note: not all subdivision schemes have only real eigenvalues or a complete set of eigenvectors. For
example, the 4 point scheme has eigenvalues
1 1
16’ _1_6)’
but it does not have a complete set of eigenvectors. These degeneracies are the cause of much technical
difficulty in the theory of subdivision. To keep our exposition simple and communicate the essential
ideas we will ignore these cases and assume from now on that we have a complete set of eigenvectors.

In this setting we can write any vectprof lengthn as a linear combination of eigenvectors:

n—-1
p= i; aiXi,

where theg; are given by the inner producgs = X; - p. This decomposition works also when the entries
of p aren 2-D points(or 3-D points in the case of surfaces) rather than single numbers. In this case each
“coefficient” g is a 2-D (3-D) point. The eigenvectoxs,... ,X,_1 are simply vectors af real numbers.

In the basis of eigenvectors we can easily compute the result of application of the subdivision matrix
to a vector of control points, that is, the control points on the next level

1111
0\0’)\1’)\2))\3’)\45)\5)\6) = (1’ E’ Z’ Za é’_

n—1
$° = s Zﬁ aXi
i=
n—1

= ZjaiS(i by linearity of S
i=
n-1

= iZO aiAiXi
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Applying S jtimes, we obtain
) 0 n—1 .
pl=8p°= izoew\i’xi.

2.4.3 Convergence of Subdivision

If Ao > 1, thenSIx° would grow without bound agincreased and subdivision would not be convergent.
Hence, we can see that in order for the sequ&hge®to converge at all, it is necessary that all eigenvalues
are at most 1. It is also possible to show that only a single eigenvalue may have magnitude 1 [33].

A simple consequence of this analysis is that we can compute the limit position directly in the eigen
basis

J=e0 J

) n-1 .
P(0) = lim §Ip° = lim _ZaAi’xi = ao,
=

since all eigen componenis;| < 1 decay to zero. For example, in the case of cubic B-spline subdivision
we can compute the limit position @ asap = %o p’, which amounts to

o 1 i
P =ag= é(pij_1+4pij +pl,a)

Note that this expression is completely independent of the leseWvhich it is computed.

2.4.4 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect the curve defined
by these control points to move in the same way as a rigid object. In other words, the curve should be
invariant under distance-preserving transformations, such as translation and ratdtidollows from
linearity of subdivision that if subdivision is invariant with respect to distance-preserving transforma-
tions, it also should be invariant under any affine transformations. The family of affine transformations
in addition to distance-preserving transformations, contains shears.

Let 1 be amn-vector of 1's andh € R? a displacement in the plane (see Figure 2.8) Tharepresents
a displacement of our seven points by a veetofpplying subdivision to the transformed points, we get

Sp'+1.a) = S'+S1-a) by linearity ofS
= pl+91-a).
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Figure 2.8:Invariance under translation.
From this we see that for translational invariance we need

Sl-a)=1-a

Therefore,1 should be the eigenvector 8fwith eigenvalue\g = 1.

Recall that when proving convergence of subdivision we assumed ihanh eigenvector with eigen-
value 1. We now see that this assumption is satisfied by any reasonable subdivision scheme. It would be
rather unnatural if the shape of the curve changed as we translate control points.

2.4.5 Geometric Behavior of Repeated Subdivision

If we assume thakg is 1, and all other eigenvalues are less than 1, we can choose our coordinate system
in such a way thady is the origin inR2. In that case we have

) n-1 )
pl= i; aiAxi
Dividing both sides by\J, we obtain

1 j n—-1 }\i j
A_ip —81X1+i;a|<)\—1) Xi.

43



successive levels of enlarged versions of

subdivision left hand side curves
displaced relative "zooming in" on the
to each other center vertex

zoom factor 1

zoom factor 2

zoom factor 4

7

_
Figure 2.9:Repeatedly applying the subdivision matrix to our set of n control points results in the control
points converging to a configuration aligned with the tangent vector. The various subdivision levels have
been offset vertically for clarity.

zoom factor 8

If we assume tha\,|, ... ,|An_1| < |A1], the sum on the right approaches zerg as . In other words
the term corresponding %o, will “dominate” the behavior of the vector of control points. In the limit,
we get a set off points arranged along the vectmr. Geometrically, this is a vector tangent to our curve
at the center point (see Figure 2.9).

Just as in the case of computing the limit point of cubic B-spline subdivision by compagting can
compute the tangent vector m‘t by computinga; = X1 - p!

" =ar=p.;— Py

If there were two equal eigenvalues, 3ay= A,, asj increases, the points in the limit configuration
will be linear combinations of two vectoeg anday, and in general would not be on the same line. This
indicates that there will be no tangent vector at the central point. This leads us to the following condition,
that, under some additional assumptions, is necessary for the existence of a tangent

All eigenvalues of S excepg = 1 should be less thah;.
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2.4.6 Size of the Invariant Neighborhood

We have argued above that the size of the invariant neighborhood for cubic splines is 5 (7 for the 4pt
scheme). This was motivated by the question of which basis functions overlap a finite sized, however
small, neighborhood of the origin. Yet, when we computed the limit position as well as the tangent
vector for the cubic spline subdivision we used left eigenvectors, whose non-zero entries did not extend
beyond the immediate neighbors of the vertex at the origin. This turns out to be a general observation.
While the larger invariant neighborhood is neededdioalysis we can actually get away with a smaller
neighborhood if we are only interested domputationof point positions and tangents at those points
corresponding to one of the original vertices. The value of the subdivision curve at the center point only
depends on those basis functions which are non-zero at that point. In the case of cubic spline subdivision
there are only 3 basis functions with this property. Similarly the first derivatives at the origin of the basis
functions centered at -2 and +2 are zero as well. Hence the derivative only depends on the immediate
neighbors as well. This must be so since the subdivision sche@k i§he basis functions have zero
derivative at the edge of their support 8y-continuity assumption, because outside of the support the
derivative is identically zero.

For curves this distinction does not make too much of a difference in terms of computations, but
in the case of surfaces life will be much easier if we can use a smaller invariant neighborhood for the
computation of limit positions and tangents. For example, for Loop’s scheme we will be able to use
a 1-ring (only immediate neighbors) rather than a 2-ring. For the Butterfly scheme we will find that a
2-ring, rather than a 3-ring is sufficient to compute tangents.

2.4.7 Summary

For our subdivision matrigwe desire the following characteristics
e the eigenvectors should form a basis;
¢ the first eigenvaluég should be 1;
¢ the second eigenvalug should be less than 1;

¢ all other eigenvalues should be less thhan
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Chapter 3

Subdivision Surfaces

Denis Zorin, New York University

In this chapter we review the basic principles of subdivision surfaces. These principles can be applied
to a variety of subdivision schemes described in Chapter 4. Doo-Sabin, Catmull-Clark, Loop, Modified
Butterfly, Kobbelt, Midedge.

Some of these schemes were around for a while: the 1978 papers of Doo and Sabin and Catmull and
Clark were the first papers describing subdivision algorithms for surfaces. Other schemes are relatively
new. Remarkably, during the period from 1978 until 1995 little progress was made in the area. In
fact, until Reif’s work [26] onC!-continuity of subdivision most basic questions about the behavior
of subdivision surfaces near extraordinary vertices were not answered. Since then there was a steady
stream of new theoretical and practical results: classical subdivision schemes were analyzed [28, 18],
new schemes were proposed [39, 11, 9, 19], and general theory was developtardCK-continuity
of subdivision [26, 20, 35, 37]. Smoothness analysis was performed in some form for almost all known
schemes, for all of them, definitive results were obtained during the last 2 years only.

One of the goals of this chapter is to provide an accessible introduction to the mathematics of subdi-
vision surfaces (Sections 3.4 and 3.5). Building on the material of the first chapter, we concentrate on
the few general concepts that we believe to be of primary importance: subdivision surfaces as parametric
surfacesC!-continuity, eigen structure of subdivision matrices, characteristic maps.

The developments of recent years have convinced us of the importance of understanding the mathe-
matical foundations of subdivision. A Computer Graphics professional who wishes to use subdivision,
probably is not interested in the subtle points of a theoretical argument. However, understanding the
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general concepts that are used to construct and analyze subdivision schemes allows one to choose the
most appropriate subdivision algorithm or customize one for a specific application.

3.1 Subdivision Surfaces: an Example

One of the simplest subdivision schemes isltbep schemeinvented by Charles Loop [16]. We will
use this scheme as an example to introduce some basic features of subdivision for surfaces.

The Loop scheme is defined for triangular meshes. The general pattern of refinement, which we call
vertex insertionis shown in Figure 3.1.

Figure 3.1: Refinement of a triangular mesh. New vertices are shown as black dots. Each edge of the
control mesh is split into two, and new vertices are reconnected to form 4 new triangles, replacing each
triangle of the mesh.

Like most (but not all) other subdivision schemes, this scheme is based on a spline basis function,
called the three-directional quartic box spline. Unlike more conventional splines, such as the bicubic
spline, the three-directional box spline is defined on the redritargular grid; the generating polyno-
mial for this spline is

1
S21,22) = 75 (1+ 2)2(1+2)*(1+z2)%.
Note that the generating polynomial for surfaces has two variables, while the generating polynomials for
curves described in Chapter 2, had only one. This spline basis funct@hdsntinuous. Subdivision

rules for it are shown in Figure 3.2.
In one dimension, once a spline basis is chosen, all the coefficients of the subdivision rules that are
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Figure 3.2: Subdivision coefficients for a three directional box spline.

needed to generate a curve are completely determined. The situation is radically different and more
complex for surfaces. The structure of the control polygon for curves is always very simple: the vertices
are arranged into a chain, and any two pieces of the chain of the same length always have identical
structure. For two-dimensional meshes, the local structure of the mesh may vary: the number of edges
connected to a vertex may be different from vertex to vertex. As a result the rules derived from the spline
basis function may be applied only to parts of the mesh that are locally regular; that is, only to those
vertices that have a valence of 6 (in the case of triangular schemes). In other cases, we have to design
new rules for vertices with different valences. Such vertices are cattiedordinary

For the time being, we consider only meshes without a boundary. Note that the quartic box spline
rule used to compute the control point inserted at an edge (Figure 3.2,left) can be applied anywhere. The
only rule that needs modification is the rule used to compute new positions of control points inherited
from the previous level.

Loop proposed to use coefficients shown in Figure 3.3. It turns out that this choice of coefficients
guarantees that the limit surface of the scheme is “smooth.”

Note that these new rules only influence local behavior of the surface near extraordinary vertices. All
vertices inserted in the course of subdivision are always regular, i.e., have valence 6.

This example demonstrates the main challenge in the design of subdivision schemes for surfaces:
one has to define additional rules for irregular parts of the mesh in such a way that the limit surfaces
have desired properties, in particular, are smooth. In this chapter one of our main goals is to describe
the conditions that guarantee that a subdivision scheme produces smooth surfaces. We start with defin-
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Figure 3.3: Loop scheme: coefficients for extraordinary vertices. The choid@ isfnot unique;
Loop [16] suggests (5/8— (3 + 1 cos?")?).

ing subdivision surfaces more rigorously (Section 3.2), and defining subdivision matrices (Section 3.3).
Subdivision matrices have many applications, including computing limit positions of the points on the
surface, normals, and explicit evaluation of the surface (Chapter 4). Next, we define more precisely what
a smooth surface is (Section 3.4), introducing two concepts of geometric smoottiaegent plane
continuity andC!-continuity Then we explain how it is possible to understand local behavior of sub-
division near extraordinary vertices using characteristic maps (Section 3.5). In Chapter 4 we discuss a
variety of subdivision rules in a systematic way.

3.2 Natural Parameterization of Subdivision Surfaces

The subdivision process produces a sequence of polyhedra with increasing numbers of faces and vertices.
Intuitively, the subdivision surface is the limit of this sequence. The problem is that we have to define
what we mean by the limit more precisely. For this, and many other purposes, it is convenient to represent
subdivision surfaces as functions defined on some parametric domain with vaRéslmthe regular

case, the plane or a part of the plane is the domain. However, for arbitrary control meshes, it might be
impossible to parameterize the surface continuously over a planar domain.

Fortunately, there is a simple construction that allows one to usitiied control mesh or more
precisely, the corresponding polygonal complex, as the domain for the surface.
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Parameterization over the initial control mesh. We start with the simplest case: suppose the initial
control mesh is a simple polyhedron, i.e., it does not have self-intersections.

Suppose each time we apply the subdivision rules to compute the finer control mesh, we also apply
midpoint subdivision to a copy of the initial control polyhedron (see Figure 3.4). This means that we
leave the old vertices where they are, and insert new vertices splitting each edge in two. Note that
each control point that we insert in the mesh using subdivision corresponds to a point in the midpoint-
subdivided polyhedron. Another important fact is that midpoint subdivision does not alter the control
polyhedron regarded as a set of points; and no new vertices inserted by midpoint subdivision can possibly
coincide.

Figure 3.4:Natural parameterization of the subdivision surface

We will use the second copy of the control polyhedron as our domain. We denote indsen it is
regarded as a polyhedron with identified vertices, edges and facel jamten it is regarded simply as
a subset oR3.
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Important remark on notation: we will refer to the points computed by subdivision @antrol
points; the wordvertex is reserved for the vertices of the polyhedron that serves as the domain and
new vertices added to it by midpoint subdivision. We will use the latterdenote vertices, angl (v) to
denote the control point correspondingvtafter j subdivision steps.

As we repeatedly subdivide, we get a mapping from a denser and denser subset of the domain to the
control points of a finer and finer control mesh. At each step, we linearly interpolate between control
vertices, and regard the mesh generated by subdivision as a piecewise linear function on the&kdomain
Now we have the same situation that we had for curves: a sequence of piecewise linear functions defined
on a common domain. If this sequence of functions converges uniformly, the limit is & rfnam |K|
into R3. This is the limit surface of subdivision.

An important fact about the parameterization that we have just constructed is that for a regular mesh
the domain can be taken to be the plane with a regular triangular grid. If in the regular case the subdivision
scheme reduces to spline subdivision, our parameterization is precisely the standaphrameteriza-
tion of the spline, which is guaranteed to be smooth.

To understand the general idea, this definition is sufficient, and a reader not interested in the sub-
tle details can proceed to the next section and assume from now on that the initial mesh has no self-
intersections.

General case. The crucial fact that we needed to parameterize the surface over its control polyhedron
was the absence of self-intersections. Otherwise, it could happen that a vertex on the control polyhedron
has more than one control point associated with it.

In general, we cannot rely on this assumption: quite often control meshes have self-intersections or
coinciding control points. We can observe though that the positions of vertices of the control polyhedron
are of no importance for our purposes: we can deform it in any way we want. In many cases, this
is sufficient to eliminate the problem with self intersections; however, there are cases when the self-
intersection cannot be removed by any deformation (example: Klein bottle, Figure 3.5). It is always
possible to do that if we place our mesh in a higher-dimensional space; in fact, 4 dimensions are always
enough.

This leads us to the following general choice of the domain: a polyhedron with no self-intersections,
possibly in four-dimensional space. The polyhedron has to have the same structure as the initial control
mesh of the surface, that is, there is a one-to-one correspondence between vertices, edges and faces of
the domain and the initial control mesh. Note that now we are completely free to chose the control points
of the initial mesh any way we like.
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Figure 3.5: The surface (Klein bottle) has an intersection that cannot be removed in 3D.

3.3 Subdivision Matrix

An important tool both for understanding and using subdivision issthtadivision matrix similar to

the subdivision matrix for the curves introduced in Chapter 2. In this section we define the subdivision
matrix and discuss how it can be used to compute tangent vectors and limit positions of points. Another
application of subdivision matrices is explicit evaluation of subdivision surfaces described in Chapter 4.

Subdivision matrix. Similarly to the one-dimensional case, the subdivision matrix relates the con-
trol points in a fixed neighborhood of a vertex on two sequential subdivision levels. Unlike the one-
dimensional case, there is not a single subdivision matrix for a given surface subdivision scheme: a
separate matrix is defined for each valence.

For the Loop scheme control points for only two rings of vertices around an extraordinary Bertex
definef(U) completely. We will call the set of vertices in these two ringsabetrol setof U.

Let p(j) be the value at levell of the control point corresponding B Assign numbers to the vertices
in the two rings (there areiertices). Note that/ | andU 11 are similar: one can establish a one-to-one
correspondence between the vertices simply by shrinkihpy a factor of 2. Enumerate the vertices
in the rings; there arellvertices, plus the vertex in the center. lpéti = 1...3k be the corresponding
control points.

By definition of the control set, we can compute all valuéél from the valuespij. Because we only
consider subdivision which computes finer levels by linear combination of points from the coarser level,
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Figure 3.6:The Loop subdivision scheme near a vertex of degree 3. Not& that+ 1 = 10 points in
two rings are required.

the relation between the vectors of poipts? andp! is given by a(3k+ 1) x (3k+ 1) matrix:

j+1

Po j

Po

péil Pax
It is important to remember that each componenpbfs a point in the three-dimensional space. The
matrix Sis the subdivision matrix, which, in general, can change from level to level. We consider only
schemes for which it is fixed. Such schemes are callationary
We can now rewrite each of the coordinate vectors in terms of the eigenvectors of theSetnm-
pare to the use of eigen vectors in the 1D setting). Thus,

P’ = ax
and
P =(9)'p" =y (M) a

where thex; are the eigenvectors & and theA; are the corresponding eigenvalues, arranged in non
increasing order. As discussed for the one-dimensional ags&s to be 1 for all subdivision schemes,

in order to guarantee invariance with respect to translations and rotations. Furthermore, all stable, con-
verging subdivision schemes will have all the remainingess than 1.
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Subdominant eigenvalues and eigenvectorslt is clear that as we subdivide, the behaviop&fwhich
determines the behavior of the surface in the immediate vicinity of our point of interest, will depend only
on the eigenvectors corresponding to the largest eigenvalugs of

To proceed with the derivation, we will assume for simplicity that A; = A, > Az. We will call
A1 andA, subdominant eigenvalueBurthermore, we letig = O; this corresponds to choosing the origin
of our coordinate system in the limit position of the vertex of interest (just as we did in the 1D setting).
Then we can write

j Aq\ !
()F:—)j = aiX1 + apXo+ag (f) X3... 3.1

where the higher-order terms disappear in the limit.

This formula is very important, and deserves careful consideration. Recabitisaa vector of &8+ 1
3D points, whilex; are vectors of 84+ 1 numbers. Hence the coefficier@sin the decomposition above
have to be 3D points.

This means that, up to a scaling by)!, the control set forf (U) approaches a fixed configuration.
This configuration is determined by andx,, which depend only on the subdivision scheme, and;on
anday which depend on the initial control mesh.

Each vertex ip! for sufficiently largej is a linear combination of; anday, up to a vanishing term.

This indicates thah; anda, span the tangent plane. Also note that if we apply an affine transéorm
taking a; anda, to coordinate vectors; ande; in the plane, then, up to a vanishing term, the scaled
configuration will be independent of the initial control mesh. The transformed configuration consists of
2D points with coordinategx;j,X2i), i = 0... 3k, which depend on the subdivision matrix.

Informally, this indicates that up to a vanishing term, all subdivision surfaces generated by a scheme
differ near an extraordinary point only by an affine transform. In fact, this is not quite true: it may happen
that a particular configuratiofxyi,x;), i = 0...3k does not generate a surface patch, but, say, a curve.
In that case, the vanishing terms will have influence on the smoothness of the surface.

Tangents and limit positions. We have observed that similar to the one-dimensional case, the coef-
ficientsag a; anday in the decomposition 3.1 are the limit position of the control point for the central
vertex vp, and two tangents respectively. To compute these coefficients, we need corresponding left
eigenvectors:

a = (lo,p), a=(l1,p), a=(l2,p)
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Similarly to the one-dimensional case, the left eigenvectors can be computed using only a smaller
submatrix of the full subdivision matrix. For example, for the Loop scheme we need to consider the
k+ 1 x k+ 1 matrix acting on the control points of 1-neighborhood of the central vertex, not on the
points of the 2-neighborhood.

In the descriptions of subdivision schemes in the next section we describe these left eigenvectors
whenever information is available.

3.4 Smoothness of Surfaces

Intuitively, we call a surface smooth, if, at a close distance, it becomes indistinguishable from a plane.
Before discussing smoothness of subdivision surfaces in greater detail, we have to define more precisely
what we mean by a surface, in a way that is convenient for analysis of subdivision.

The discussion in the section is somewhat informal; for a more rigorous treatment, see [26, 25, 35],

3.4.1 Cl-continuity and Tangent Plane Continuity

Recall that we have defined the subdivision surface as a funétioi| — R on a polyhedron. Now

we can formalize our intuitive notion of smoothness, namely local similarity to a piece of the plane. A
surface is smooth at a poirtof its domain|K|, if for a sufficiently small neighborhoody of that point

the imagef (Uy) can be smoothly deformed into a planar disk. More precisely,

Definition 1 A surface f: |K| — R® is Cl-continuous if for every point xc |K| there exists a regular
parameterizatiort: D — f(Uy) of f(Uy) over a unit disk D in the plane, wherg i$ the neighborhood

in |K| of x. Aregular parameterizatiornrtis one that is continuously differentiable, one-to-one, and has
a Jacobi matrix of maximum rank.

The condition that the Jacobi matrix pfhas maximum rank is necessary to make sure that we have no
degeneracies, i.e., that we really do have a surface, not a curve or pgint (ps, p2, ps) and the disc
is parameterized by, andx,, the condition is that the matrix

opL  0py
0X1 aXZ
opz 9P
aX1 aXZ
ops  0ps
0X1 aXZ

have maximal rank (2).
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There is another, weaker, definition of smoothness, which is often useful. This definition captures the
intuitive idea that the tangent plane to a surface changes continuously near a smooth point. Recall that a
tangent plane is uniquely characterized by its normal. This leads us to the following definition:

Definition 2 A surface f. |K| — R3istangent plane continuoust x< |K| if and only if surface normals
are defined in a neighborhood around x and there exists a limit of normals at x.

This is a useful definition, since it is easier to prove surfaces are tangent plane continuous. Tangent
plane continuity, however, is weaker th@h-continuity.

As a simple example of a surface that is tangent plane continuous bDt4tontinuous, consider the
shape in Figure 3.7. Points in the vicinity of the central point are “wrapped around twice.” There exists a
tangent plane at that point, but the surface does not “locally look like a plane.” Formally speaking, there
is no regular parameterization of the neighborhood of the central point, even though it has a well-defined
tangent plane.

From the previous example, we see how the definition of tangent plane continuity must be strength-
ened to becom€?:

Lemma 4 If a surface is tangent plane continuous at a point and the projection of the surface onto the
tangent plane at that point is one-to-one, the surfacelis C

The proof can be found in [35].

3.5 Analysis of Subdivision Surfaces

In this section we discuss how to determine if a subdivision scheme produces smooth surfaces. Typically,
it is known in advance that a scheme produCésontinuous (or better) surfaces in the regular setting.

For local schemes this means that the surfaces generated on arbitrary mesblesarnuous away

from the extraordinary vertices. We start with a brief discussion of this fact, and then concentrate on
analysis of the behavior of the schemes near extraordinary vertices. Our goal is to formulate and provide
some motivation for Reif’s sufficient condition f@-continuity of subdivision.

We assume a subdivision scheme defined on a triangular mesh, with certain restrictions on the struc-
ture of the subdivision matrix, defined in Section 3.5.2. Similar derivations can be performed without
these assumptions, but they become significantly more complicated. We consider the simplest case so as
not to obscure the main ideas of the analysis.
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Figure 3.7:Example of a surface that is tangent plane continuous but hatgdtinuous.
3.5.1 Cl-continuity of Subdivision away from Extraordinary Vertices
Most subdivision schemes are constructed from regular schemes, which are known to produce at least
Cl-continuous surfaces in the regular setting for almost any initial configuration of control points. If our

subdivision rules are local, we can take advantage of this knowledge to show that the surfaces generated
by the scheme ar@!-continuous for almost any choice of control points anywtasay from extraor-
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dinary vertices We call a subdivision scheme local, if only a finite number of control points is used to
compute any new control point, and does not exceed a fixed number for all subdivision levels and all
control points.

One can demonstrate, as we did for the curves, that for any tridngi¢he domain the surfacg(T)
is completely determined by only a finite number of control points corresponding to vertices around
T. For example, for the Loop scheme, we need only control points for vertices that are adjacent to the
triangle. (see Figure 3.8). This is true for triangles at any subdivision level.

Figure 3.8: Control set for a triangle for the three-directional box spline.

To show this, fix a poink of the domainK| (not necessarily a vertex). For any leyek is contained
in a face of the domain; i is a vertex, it is shared by several faces. Uétx) be the collection of faces
on levelj containingx, thel-neighborhoodf x. The 1-neighborhood of a vertex can be identified with a
k-gon in the plane, wherkis the valence. We negdo be large enough so that all neighbors of triangles
in UJ(x) are free of extraordinary vertices. Unlesis an extraordinary vertex, this is easily achieved.
f(Ul(x)) will be regular (see Figure 3.9).

==

Figure 3.9: 2-neighborhoods (1-neighborhood of 1-neighborhood) of vertices A, C contain only regular
vertices; this is not the case for B, which is an extraordinary vertex.

This means thaf (U(x)) is identical to a part of the surface corresponding to a regular mesh, and
is thereforeC!-continuous for almost any choice of control points, because we have assumed that our
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scheme generat&-continuous surfaces over regular meshes.

3.5.2 Smoothness Near Extraordinary Vertices

Now that we know that surfaces generated by our scheme are (at@@asthtinuous away from the
extraordinary vertices, all we have to do is find a a smooth parameterization near each extraordinary
vertex, or establish that no such parameterization exists.

Consider the extraordinary vert®&in Figure 3.9. After sufficient number of subdivision steps, we
will get a 1-neighborhootll | of B, such that all control points defininigfU !) are regular, exce itself.
This demonstrates that it is sufficient to determine if the scheme gen@atantinuous surfaces for
a very specific type of domairs: triangulations of the plane which have a single extraordinary vertex
in their center, surrounded by regular vertices. We can assume all triangles of these triangulations to be
identical (see Figure 3.10) and call such triangulatikmegular.

Figure 3.10:k-regular triangulation for k= 9.

At first, the task still seems to be very difficult: for any configuration of control vertices, we have to
find a parameterization df(U!). However, it turns out that the problem can be further simplified.

We outline the idea behind sufficientcondition forC*-continuity proposed by Reif [26]. This cri-
terion tells us when the scheme is guaranteed to proﬁ&mntinuous surfaces, but if it fails, it is still
possible that the scheme might®&continuous.

In addition to the subdivision matrix described in Section 3.3 , we need one more tool to formulate
the criterion: thecharacteristic maplt turns out that rather than trying to consider all possible surfaces
generated by subdivision, it is typically sufficient to look at a single map—the characteristic map.

1our argument is informal, and there are certain unusual cases when it fails; see [35] for details.
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3.5.3 Characteristic Map

Our observations made in Section 3.3 motivate the definition ofllaeacteristic map Recall that the
control points near a vertex converge to a limit configuration independent, up to an affine transformation,
from the control points of the original mesh. This limit configuration defines a map. Informally speaking,
any subdivision surface generated by a scheme looks near an extraordinary vertex of kidilentee
characteristic map of that scheme for valekce

Figure 3.11:Control set of the characteristic map for=k9.

Note that when we described subdivision as a function from the plaiR® tove may use control
vertices not fromR3, but fromR?; clearly, subdivision rules can be applied in the plane rather then in
space. Then in the limit we obtain a map from the plane into the plane. The characteristic map is a map
of this type.

As we have seen, the configuration of control points near an extraordinary vertex appraghes
axXo, Up to a scaling transformation. This means that the part of the surface defined logdhé)
asj — o, and scaled by the factor/a}, approaches the surface defined by the vector of control points
ajX1 +axXp. Letflp]: U — RS be the limit surface generated by subdivisionlbfrom the control set
p.

Definition 3 The characteristic map of a subdivision scheme for a valence k is thedmdp — R?
generated by the vector of 2D control pointxe+ exxe: @ = fle1x; + exXz], where g and e are unit
coordinate vectors, andpand % are subdominant eigenvectors.
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Regularity of the characteristic map Inside each triangle of thiegonU, the map isC!: the argu-

ment of Section 3.5.1 can be used to show this. Moreover, the map has one-sided derivatives on the

boundaries of the triangles, except at the extraordinary vertex, so we can define one-sided Jacobians on

the boundaries of triangles too. We will say that the characteristic maggugar if its Jacobian is not

zero anywhere ol excluding the extraordinary vertex but including the boundaries between triangles.
The regularity of the characteristic map has a geometric meaning: any subdivision surface can be

written, up to a scale factov!, as

fIp'](t) = A®(t) +a(t)O ((As/A)!)

teul, a(t) a bounded functiot)] — RS, andA is a linear transform taking the unit coordinate vectors
in the plane ta; anday. Differentiating along the two coordinate directidnsandt, in the parametric
domainU/, and taking a cross product, after some calculations, we get the expression for the normal to
the surface:
n(t) = (a x a)J[®(1)] + O ((Aa/N)) a(t)

whereJ[®] is the Jacobian, arat) some bounded vector function bh.

The fact that the Jacobian does not vanishdameans that the normal is guaranteed to converge to
a; x ap; therefore, the surface is tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we assum@ ikanjective,
we can invert it and parameterize any surfacd @1(s)), wheres € ®(U). Intuitively, it is clear that
up to a vanishing term this map is just an affine map, and is differentiable. We omit a rigorous proof
here. For a complete treatment see [26]; for more recent developments, see [35] and [37].

We arrive at the following condition, which is the basis of smoothness analysis of all subdivision
schemes considered in these notes.

Reif’s sufficient condition for smoothness.Suppose the eigenvectors of a subdivision matrix form a
basis, the largest three eigenvalues are real and satisfy

)\o:1>7\1:7\2>‘)\3’

If the characteristic map is regular, then almost all surfaces generated by subdivision are tangent
plane continuous; if the characteristic map is also injective, then almost all surfaces generated by
subdivision areC*-continuous.

Note: Reif’s original condition is somewhat different, because he defines the characteristic map on an
annular region, rather than orkagon. This is necessary for applications, but makes it somewhat more
difficult to understand.
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Figure 3.12: The charts for a surface with piecewise smooth boundary.

In Chapter 4, we will discuss the most popular stationary subdivision schemes, all of which have
been proved to b€!-continuous at extraordinary vertices. These proofs are far from trivial: checking
the conditions of Reif’s criterion is quite difficult, especially checking for injectivity. In most cases
calculations are done in symbolic form and use closed-form expressions for the limit surfaces of subdivi-
sion [28, 9, 18, 19]. In [36] an interval-based approach is described, which does not rely on closed-form
expressions for limit surfaces, and can be applied, for example, to interpolating schemes.

3.6 Piecewise-smooth surfaces and subdivision

Piecewise smooth surfaces. So far, we have assumed that we consider only closed smooth surfaces.
However, in reality we typically need to model more general classes of surfaces: surfaces with bound-
aries, which may have corners, creases, cusps and other features. One of the significant advantages of
subdivision is that it is possible to introduce features into surfaces using simple modifications of rules.
Here we briefly describe a class of surfacg®e¢ewise smooth surfageshich appears to be adequate

for many applications. This is the class of surfaces that includes, for example, quadrilateral free-form
patches, and other common modeling primitives. At the same time, we have excluded from considera-
tion surfaces with various other types of singularities. To generate surfaces from this class, in addition to
vertex and edge rules such as the Loop rules (Section 3.1), we need to define several other types of rules.

To define piecewise smooth surfaces, we start with smooth surfaces that have a piecewise-smooth
boundary. For simplicity, assume that our surfaces do not have self-intersections. Recall that for closed
Cl-continuous surfac#! in R3 each point has a neighborhood that can be smoothly deformed into an
open planar disio.

A surface with a smooth boundaigydefined in a similar way, but the neighborhoods of points on the
boundary can be smoothly deformed into a half-dislkwith closed boundary. To define a surface with
piecewise smooth boundaries, we introduce two additional types of local charts: concave and convex
corner chartsQs; andQ; (Figure 3.12). Thus, &!-continuous surface with piecewise smooth boundary
locally looks like one of the domair3, H, Q; andQs.
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Piecewise-smooth surfacese the surfaces that can be constructed out of surfaces with piecewise
smooth boundaries joined together.

If the resulting surface is nd!-continuous at the common boundary of two pieces, this common
boundary is a crease. We allow two adjacent smooth segments of a boundary to be joined, producing a
crease ending in dart (cf. [10]). For dart vertices an additional ch&y4 is required; the surface near a
dart can be deformed into this chart smoothly everywhere except at an open edge starting at the center of
the disk.

Subdivision schemes for piecewise smooth surfacesAn important observation for constructing sub-
division rules for the boundary is that the last two corner types are not equivalent, that is, there is no
smoothnon-degeneratenap fromQ); to Qs. It follows from the theory of subdivision [35], that a single
subdivision rule cannot produce both types of corners. In general, any complete set of subdivision rules
should contain separate rules for all chart types. Most, if not all, known schemes provide rules for charts
of type D andH (smooth boundary and interior vertices); rules for charts of @pend Qg (convex
corners and darts) are typically easy to construct; how&€gefconcave corner) is more of a challenge,
and no rules were known until recently.

In Chapter 4 we present descriptions of various rules for smooth (not piecewise smooth) surfaces with
boundary. For extensions of the Loop and Catmull-Clark schemes including concave corner rules, see

2].

Interpolating boundaries. Quite often our goal is not just to generate a smooth surface of a given
topological type approximating or interpolating an initial mesh with boundary, but to interpolate a given
set of boundary or even an arbitrary set of curves. In this case, one can use a technique developed
by A. Levin [13, 14, 15]. The advantage of this approach is that the interpolated curves need not
be generated by subdivision; one can easily create blend subdivision surfaces with different types of
parametric surfaces (for a example, NURBS).

64



Chapter 4

Subdivision Zoo

Denis Zorin, New York University

4.1 Overview of Subdivision Schemes

In this section we describe most known stationary subdivision schemes gen&htiogtinuous sur-
faces on arbitrary meshes. Without doubt, our discussion is not exhaustive even as far as stationary
schemes are concerned. There are even wholly different classes of subdivision schemes, most impor-
tantly variational schemes, that we do not discuss here (see Chapter 9).

At first glance, the variety of existing schemes might appear chaotic. However, there is a straightfor-
ward way to classify most of the schemes based on four criteria:

e the type of refinement rule (face split or vertex split);
¢ the type of generated mesh (triangular or quadrilateral);
e whether the scheme is approximating or interpolating;

e smoothness of the limit surfaces for regular mesfésG? etc.)

The following table shows this classification:

Face split

Vertex split
Doo-Sabin, Midedged*)
Biquartic C?)

Triangular meshes | Quad. meshes

Approximating| Loop (C?) Catmull-Clark C?)
Interpolating | Mod. Butterfly C!) | Kobbelt CY)
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Out of recently proposed schemag3 subdivision [12], and subdivision on-4k meshes [31, 32]
do not fit into this classification. In this survey, we focus on the better-known and established schemes,
and this classification is sufficient for most purposes. It can be extended to include the new schemes, as
discussed in Section 4.9.

The table shows that there is little replication in functionality: most schemes produce substantially
different types of surfaces. Now we consider our classification criteria in greater detail.

First, we note that each subdivision scheme defined on meshes of arbitrary topology is based on a
regular subdivision schem#or example, one based on splines. Our classification is primarily a classifi-
cation of regular subdivision schemes—once such a scheme is fixed, additional rules have to be specified
only for extraordinary vertices or faces that cannot be part of a regular mesh.

Mesh Type. Regular subdivision schemes act on regular control meshes, that is, vertices of the mesh
correspond to regularly spaced points in the plane. However, the faces of the mesh can be formed in
different ways. For a regular mesh, it is natural to use faces that are identical. If, in addition, we assume
that the faces are regular polygons, it turns out that there are only three ways to choose the face polygons:
we can use squares, equilateral triangles and regular hexagons. Meshes consisting of hexagons are not
very common, and the first two types of tiling are the most convenient for practical purposes. These lead
to two types of regular subdivision schemes: those defined for quadrilateral tilings, and those defined for
triangular tilings.

Face Split and Vertex Split. Once the tiling of the plane is fixed, we have to define how a refined
tiling is related to the original tiling. There are two main approaches that are used to generate a refined
tiling: one isface splitand the other isertex split(see Figure 4.1). The schemes using the first method

are often callegbrimal, and the schemes using the second method are @hilgdIn the first case, each

face of a triangular or a quadrilateral mesh is split into four. Old vertices are retained, new vertices are
inserted on the edges, and for quadrilaterals, an additional vertex is inserted for each face. In the second
case, for each old vertex, several new vertices are created, one for each face adjacent to the vertex. A
new face is created for each edge and old faces are retained; in addition, a new face is created for each
vertex. For quadrilateral tilings, this results in tilings in which each vertex has valence 4. In the case of
triangles vertex split (dual) schemes results in non-nesting hexagonal tilings. In this sense quadrilateral
tilings are special: they support both primal and dual subdivision schemes easily (see also Chapter 5).
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Face split for quads Vertex split for quads
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Face split for triangles

Figure 4.1: Different refinement rules.
Approximation vs. Interpolation.  Face-split schemes can be interpolating or approximating. Vertices
of the coarser tiling are also vertices of the refined tiling. For each vertex a sequence of control points,
corresponding to different subdivision levels, is defined. If all points in the sequence are the same, we
say that the scheme is interpolating. Otherwise, we call it approximating. Interpolation is an attractive
feature in more than one way. First, the original control points defining the surface are also points of the
limit surface, which allows one to control it in a more intuitive manner. Second, many algorithms can be
considerably simplified, and many calculations can be performed “in place.” Unfortunately, the quality
of these surfaces is not as high as the quality of surfaces produced by approximating schemes, and the
schemes do not converge as fast to the limit surface as the approximating schemes.
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4.1.1 Notation and Terminology

Here we summarize the notation that we use in subsequent sections. Some of it was already introduced
earlier.

Regular and extraordinary vertices. We have already seen that subdivision schemes defined on trian-
gular meshes create new vertices of valence 6 in the interior. On the boundary, the newly created
vertices have valence 4. Similarly, on quadrilateral meshes both face-split and vertex-split schemes
create only vertices of valence 4 in the interior, and 3 on the boundary. Hence, after several sub-
division steps, most vertices in a mesh will have one of these valences (6 in the interior, 4 on the
boundary for triangular meshes, 4 in the interior, 3 on the boundary for quadrilateral). The vertices
with these valences are calleshular and vertices of other valencegtraordinary

Notation for vertices near a fixed vertex. In Figure 4.2 we show the notation that we use for control
points of quadrilateral and triangular subdivision schemes near a fixed vertex. Typically, we need
it for extraordinary vertices. We also use it for regular vertices when describing calculations of
limit positions and tangent vectors.

Odd and even vertices.For face-split (primal) schemes, the vertices of the coarser mesh are also ver-
tices of the refined mesh. For any subdivision level, we call all new vertices that are created at that
level, odd vertices This term comes from the one-dimensional case, when vertices of the control
polygons can be enumerated sequentially and on any level the newly inserted vertices are assigned
odd numbers. The vertices inherited from the previous level are calienl (See also Chapter 2).

Face and edge verticesFor triangular schemes (Loop and Modified Butterfly), there is only one type
of odd vertex. For quadrilateral schemes, some vertices are inserted when edges of the coarser
mesh are split, other vertices are inserted for a face. These two types of odd vertices are called
edgeandfacevertices respectively.

Boundaries and creases.Typically, special rules have to be specified on the boundary of a mesh. These
rules are commonly chosen in such a way that the boundary curve of the limit surface does not
depend on any interior control vertices, and is smooth or piecewise sn@oti C2-continuous).

The same rules can be used to introduce sharp feature€irgorfaces: some interior edges can
betaggedas crease edges, and boundary rules are applied for all vertices that are inserted on such
edges.
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Figure 4.2: Enumeration of vertices of a mesh near an extraordinary vertex; for a boundary vertex, the
0—th sector is adjacent to the boundary.

Masks. We often specify a subdivision rule by providing itsask The mask is a picture showing the
control points used to compute a new control point, which we usually denote with a black dot. The
numbers next to the vertices are the coefficients of the subdivision rule.

4.2 Loop Scheme

The Loop scheme is a simple approximating face-split scheme for triangular meshes proposed by Charles
Loop [16]. C1-continuity of this scheme for valences up to 100, including the boundary case, was proved
by Schweitzer [28]. The proof for all valences can be found in [35].

The scheme is based on thaee-directional box splinewhich producesC?-continuous surfaces
over regular meshes. The Loop scheme produces surfaces ti@#eoatinuous everywhere except at
extraordinary vertices, where they &@&-continuous. Hoppe, DeRose, Duchamp et al. [10] proposed a
piecewiseCl-continuous extension of the Loop scheme, with special rules defined for edges; in [2, 3],

69



the boundary rules are further improved, and new rules for concave corners and normal modification are

proposed.
The scheme can be applied to arbitrary polygonal meshes, after the mesh is converted to a triangular
mesh, for example, by triangulating each polygonal face.

Subdivision Rules. The masks for the Loop scheme are shown in Figure 4.3. For boundaries and
edges tagged asreaseedges, special rules are used. These rules produce a cubic spline curve along the
boundary/crease. The curve only depends on control points on the boundary/crease.

1
]

Interior

Col wy
ol

ol ~

1%%] Crease and boundary 1

2 2 8

Nwe
Col -

a. Masks for odd vertices b. Masks for even vertices

Figure 4.3: Loop subdivision: in the picture abov@can be chosen to be eithg(5/8— (2 + 1 cosZ)?)
(original choice of Loop [16]), or, for n> 3, 3 = 8—3n as proposed by Warren [33]. Fora 3, 3 =3/16
can be used.

In [10], the rules for extraordinary crease vertices and their neighbors on the crease were modified to
produce tangent plane continuous surfaces on either side of the crease (or on one side of the boundary). In
practice, this modification does not lead to a significant difference in the appearance of the surface. At the
same time, as a result of this modification, the crease curve becomes dependent on the valences of vertices
on the curve. This is a disadvantage in situations when two surfaces have to be joined together along a
boundary. It appears that for display purposes it is safe to use the rules shown in Figure 4.3. Although
the surface will not be formallg®-continuous near vertices of valence greater than 7, the result will be
visually indistinguishable from @!-surface obtained with modified rules, with the additional advantage
of independence of the boundary from the interior.
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If it is necessary to ensuf@t-continuity, a different modification can be used. Rather than modifying
the rules for a crease, and making them dependent on the valence of vertices, we modify rules for interior
odd vertices adjacent to an extraordinary vertex. frer 7, no modification is necessary. For> 7,
it is sufficient to use the mask shown in Figure 4.4. Then the limit surface can be showrCie be
continuous at the boundary. A better, although slightly more complex modification can be found in [3, 2]:
instead of} and2 we can use + 2 cos;Z% and$ — 1 cos 2% respectively, wherk is the valence of the

boundary/crease vertex. ;
8

1
2
extraordinary
vertex

Al ~

crease neighbors

Col~

crease

Figure 4.4: Modified rule for odd vertices adjacent to a boundary/crease extraordinary vertex (Loop
scheme).

Tangent Vectors. The rules for computing tangent vectors for the Loop scheme are especially simple.
To compute a pair of tangent vectors at an interior vertex, use

K om
= COS—Pi1
2%

k-1

.21
tb=Y sin—pi1.
2" P

These formulas can be applied to the control points at any subdivision level.

Quite often, the tangent vectors are used to compute a normal. The normal obtained as the cross
productt; x t, can be interpreted geometrically. This cross product can be written as a weighted sum
of normals to all possible triangles formed by, pi1, pi1, i,| =0...k—1,i #|. The standard way
of obtaining vertex normals for a mesh by averaging the normals of triangles adjacent to a vertex, can
be regarded as a first approximation to the normals given by the formulas above. At the same time, it
is worth observing that computing normalstas t, is less expensive than averaging the normals of

(4.1)
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triangles. The geometric nature of the normals obtained in this way suggests that they can be used to
compute approximate normals for other schemes, even if the precise normals require more complicated
expressions.

Ataboundary vertex, the tangent along the curve is computed ti&jRg= Po1— Pk—1,1. The tangent
across the boundary/crease is computed as follows [10]:

tacross= Po1+ P11 — 2P0 fork=2

tacross= P21 — Po fork=3 (4.2)

k—2
tacross= SiNB (Po.1 + Pk—1,1) + (2c0HN - 2) Zl siniBpiy fork>4

where® = 11/(k—1). These formulas apply whenever the scheme is tangent plane continuous at the
boundary; it does not matter which method was used to ensure tangent plane continuity.

Limit Positions.  Another set of simple formulas allows one to compute limit positions of control points
for a fixed vertex, that is, the limit lifn,. p! for a fixed vertex. For interior vertices, the mask for
computing the limit value at an interior vertex is the same as the mask for computing the value on the
; __ 1
next level, with@ replaced by = 387"
For boundary and crease vertices, the formula is always

°°—} _|_:_3 _|_}
Po = 5po,l 5po 5I01.,|<_1

This expression is similar to the rule for even boundary vertices, but with different coefficients. However,
different formulas have to be used if the rules on the boundary are modified as in [10].

4.3 Modified Butterfly Scheme

The Butterfly scheme was first proposed by Dyn, Gregory and Levin in [7]. The original Butterfly
scheme is defined on arbitrary triangular meshes. However, the limit surface @-gohtinuous at
extraordinary points of valende= 3 andk > 7 [35], while it isC* on regular meshes.

Unlike approximating schemes based on splines, this scheme does not produce piecewise polynomial
surfaces in the limit. In [39] a modification of the Butterfly scheme was proposed, which guarantees that
the scheme produc&'-continuous surfaces for arbitrary meshes (for a proof see [35]). The scheme is
known to beC! but notC? on regular meshes. The masks are shown in Figure 4.5.
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16 16
1 ° 1
2 v 2
1 1
16 1 "6

.8 . .
Mask for interior odd vertices with
regular neighbors

Mask for crease
and boundary vertices

a. Masks for odd vertices b. Mask for odd vertices adjacent to
an extraordinary vertex

Figure 4.5: Modified Butterfly subdivision. The coefficienta £ (1 + cosa™ + 1 cos4T) for k > 5.
Fork=3 9= S2=—3%fork=4,9=3,9=-%,s35=0.

The tangent vectors at extraordinary interior vertices can be computed using the same rules as for
the Loop scheme. For regular vertices, the formulas are more complex: in this case, we have to use
control points in a 2-neighborhood of a vertex. If the control points are arranged into a yegtor
[P0, Po,1; P11, - - - » P5,1, Po,2, P12, P22, - - - Ps,3] Of length 19, then the tangents are given by scalar products
(I1- p) and(l2 - p), where the vectorg andl; are

aé’_éa_l’_é’é
4 8 4484,11, 1 1
37 37 37373737 72727 b 27 2

1 1 11
l, = [o, 16,8,—8,~16,—8,8,—4,0,4,4,0,—4,1 }
(4.3)

l, =+/3 [o, 0,8,8,0,—8,—8,—

Because the scheme is interpolating, no formulas are needed to compute the limit positions: all control
points are on the surface. On boundaries and creases the four-point subdivision scheme, also shown in
Figure 4.5, is used [6]. To achie@-continuity on the boundary, special coefficients have to be used for
crease neighbors, similar to the case of the Loop scheme. One can also adopt a simpler solution: obtain
missing vertices by reflection whenever the butterfly stencil is incomplete, and always use the standard
Butterfly rule, when there is no adjacent interior extraordinary vertex. This approach however results in
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visible singularities. For completeness, we describe a set of rules that Edstmatinuity, as these rules
were not previously published.

Boundary Rules. The rules extending the Butterfly scheme to meshes with boundary are somewhat
more complex, because the stencil of the Butterfly scheme is larger. A number of different cases have
to be considered separately: first, there is a number of ways in which one can chop off triangles from
the butterfly stencil; in addition, the neighbors of the vertex that we are trying to compute can be either
regular or extraordinary.

A complete set of rules for a mesh with boundary (up to head-tail permutations), includes 7 types
of rules: regular interior, extraordinary interior, regular interior-crease, regular crease-crease 1, regular
crease-crease 2, crease, and extraordinary crease neighbor; see Figures 4.5, 4.6, and 4.7. To putit all into
a system, the main cases can be classified by the types of head and tail vertices of the edge on which we
add a new vertex.

Recall that an interior vertex is a regular if its valence is 6, and a crease vertex is regular if its valence
is 4. The following table shows how the type of rule to be applied to computenecreasevertex is
determined from the valence of the adjacent vertices and whether they are on a crease or not. As we
have already mentioned, the 4-point rule is used to compute new crease vertices. The only case when
additional information is necessary, is when both neighbors are regular crease vertices. In this case the
decision is based on the number of crease edges of the adjacent triangles (Figure 4.6).

Head Tail Rule
regular interior
regular interior regular crease regular interior-crease

regular crease regular crease regular crease-crease 1 or 2

extraordinary interior| extraordinary interior average two extraordinary rules

regular interior standard rule

extraordinary interior
extraordinary crease
regular interior
regular interior
extraordinary interior
regular crease

extraordinary crease
extraordinary crease
extraordinary interior
extraordinary crease
regular crease

extraordinary crease

same
same

interior extraordinary
crease extraordinary
interior extraordinary
crease extraordinary
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1 11 1
" 16 3 8 8 1 g © 0
16 4
interior-crease rule crease-crease rule 1 crease-crease rule 2

Figure 4.6: Regular Modified Butterfly boundary/crease rules.
The extraordinary crease rule (Figure 4.7) uses coefficientg = 0...k, to compute the vertex

numberi in the ring, when counted from the boundary. Bgt= 11/(k— 1). The following formulas
defineg; :

Co=1— (1/(k— 1)) sinBysini6y/(1— cosby)
Gio = Cik = 1/4cosi6 — (1/4(k— 1)) sin 2y sin 2yi / (cosby — cos By)
Gij = (1/k)(siniBsinjB + (1/2) sin 26y sin 2j6)

Figure 4.7: Modified Butterfly rules for neighbors of a crease/boundary extraordinary vertex.

4.4 Catmull-Clark Scheme

The Catmull-Clark scheme was described in [4]. It is based on the tensor product bicubic spline. The
masks are shown in Figure 4.8. The scheme produces surfaces tBateserywhere except at extraor-
dinary vertices, where they a@. The tangent plane continuity of the scheme was analyzed by Ball and
Storry [1], andC-continuity by Peters and Reif [18]. The valuesooéndf can be chosen from a wide

range (see Figure 4.10). On the boundary, using the coefficients for the cubic spline produces acceptable

75



results, however, the resulting surface formally is @btcontinuous. A modification similar to the one
performed in the case of Loop subdivision makes the sct@hmntinuous (Figure 4.9). Again, a bet-
ter, although a bit more complicated choice of coefficients-is cos;Z% instead off and3 —  cos;Z%
instead of%. See [38] for further details about the behavior on the boundary.

1 1
4 4
[ ]

1 1
4 4

Mask for a face vertex

1 1
16 16 Interior
3o 13
s 18
1 1
16 16

Mask for an edge vertex

1 L 4 !
)i 1 Crease and boundary I 3 1
2 2 8 4 8
Mask for a boundary odd vertex
a. Masks for odd vertices b. Mask for even vertices

Figure 4.8: Catmull-Clark subdivision. Catmull and Clark [4] suggest the following coefficients for
rules at extraordinary vertices = & andy= %

The rules of Catmull-Clark scheme are defined for meshes with quadrilateral faces. Arbitrary polygo-
nal meshes can be reduced to a quadrilateral mesh using a more general form of Catmull-Clark rules [4]:

e aface control point for an-gon is computed as the average of the corners of the polygon;

76



16 16
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ZO—e— —
vertex 8 8

1 1

16 16

Figure 4.9: Maodified rule for odd vertices adjacent to a boundary extraordinary vertex (Catmull-Clark
scheme).

B

0.8 |

0.6 1

0.4 1

0.21

0 0.2 0.4 0.6 0.8 1 A

Figure 4.10: Ranges for coefficientsand3 of the Catmull-Clark scheme; = 1—y— (3 is the coefficient
of the central vertex.

e an edge control point as the average of the endpoints of the edge and newly computed face control
points of adjacent faces;

¢ the formula for even control points can be chosen in different ways; the original formula is
k—1 k-1
j1_k=2, 1 1T
Po = PoTiz % Piit iz % Pi2
1= 1=

using the notation of Figure 4.2. Note that face control points on lpvel are used.
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45 Kobbelt Scheme

This interpolating scheme was described by Kobbelt in [11]. For regular meshes, it reduces to the tensor
product of the four point scheme&!-continuity of this scheme for interior vertices for all valences is
proven in [36].

1 9 9 1

256 256 T256 256
81 81
_ 9 25 256 | 9
256 256
[ ]

9 9

256 81 81 " 256
256 256

1 9 9 1

256 256 256 256

Mask for a face vertex

1 9 9 1
“16 16 6 16
Mask for edge, crease

and boundary vertices b. Computing a face vertex adjacent to an extraordinary

vertex

a. Regular masks

Figure 4.11: Kobbelt subdivision.

Crucial for the construction of this scheme is the observation (valid for any tensor-product scheme)
that the face control points can be computed in two steps: first, all edge control points are computed.
Next, face vertices are computed using duge ruleapplied to a sequence of edge control points on the
same level. As shown in Figure 4.11, there are two ways to compute a face vertex in this way. In the
regular case, the result is the same. Assuming this method of computing all face control points, only one
rule of the regular scheme is modified: the edge odd control points adjacent to an extraordinary vertex
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are computed differently. Specifically,

pli = (5~ WP+ (5~ WPl +wpl +wpls
V'j:ﬂk_lp'jl—(p'j el +p 11)‘*(9j 22+ P+ P40 12)+47Wk_1p'j2
i — X —2, -1 y )
ki; 1, -1, 1, 141, 1/2—W 1—2, -1, 1, 141, (:L/Z_W)kl;j 1,

(4.4)

wherew = —1/16 (also, see Figure 4.2 for notation). On the boundaries and creases, the four point
subdivision rule is used.

Unlike other schemes, eigenvectors of the subdivision matrix cannot be computed explicitly; hence,
there are no precise expressions for tangents. In any case, the effective support of this scheme is too large
for such formulas to be of practical use: typically, it is sufficient to subdivide several times and then use,
for example, the formulas for the Loop scheme (see discussion in the section on the Loop scheme).

For more details on this scheme, see the part of the notes written by Leif Kobbelt.

4.6 Doo-Sabin and Midedge Schemes

Doo-Sabin subdivision is quite simple conceptually: there is no distinction between odd and even ver-
tices, and a single mask is sufficient to define the scheme. A special rule is required only for the bound-
aries, where the limit curve is a quadratic spline. It was observed by Doo that this can also be achieved
by replicating the boundary edge, i.e., creating a quadrilateral with two coinciding pairs of vertices.
Nasri [17] describes other ways of defining rules for boundaries. The rules for the Doo-Sabin scheme
are shown in Figure 4.1Z-continuity for schemes similar to the Doo-Sabin schemes was analyzed by
Peters and Reif [18].

An even simpler scheme was proposed by Habib and Warren [9] and by Peters and Reif [19]: this
scheme uses even smaller stencils than the Doo-Sabin scheme; for regular vertices, only three control
points are used (Figure 4.13).

A remarkable property of both Midedge and Doo-Sabin subdivision is that the interior rules, at least
in the regular case, can be decomposed into a sequence of averaging steps, as shown in Figures 4.14 and
Figures 4.15

In both cases the averaging procedure generalizes to arbitrary meshes. However, the edge averaging
procedure, as it was established in [19], does not result in well-behaved surfaces, when applied to arbi-
trary meshes. In contrast, centroid averaging, when applied to arbitrary meshes, results precisely in the
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regular vertex

Mask for interior vertices

J — —.—}
4 4

Mask for boundary vertices

Figure 4.12: Doo-Sabin subdivision. The coefficients are defined by the formylasl/4+ 5/4k and

a; = (3+2cog2it/k))/4k, fori=1...k—1. Another choice of coefficients was proposed by Catmull
and Clark:0p=1/2+1/4k, a1 = ax_1 = 1/8+1/4k, anda; = 1/4k fori=2...k—2.

Catmull-Clark variant of the Doo-Sabin scheme. Another important observation is that centroid averag-
ing can be applied more than once. This idea provides us with a different view of a class of quadrilateral
subdivision schemes, which we now discuss in detail.

4.7 Uniform Approach to Quadrilateral Subdivision

As we have observed in the previous section, the Doo-Sabin scheme can be represented as midpoint
subdivision followed by a centroid averaging step. What if we apply the centroid averaging step one
more time? The result is a primal subdivision scheme, in the regular case coinciding with Catmull-Clark.

In the irregular case the stencil of the resulting scheme is the same as the stencil of Catmull-Clark, but
the coefficientst and used in the vertex rule are different. However, the new coefficients also result in

a well-behaved scheme producing surfaces only slightly different from Catmull-Clark.

Clearly, we can apply the centroid averaging to midpoint-subdivided mesh any number of times,
obtaining in the regular case splines of higher and higher degree. Similar observations were made inde-
pendently by a number of people: [34, 29, 30].

For arbitrary meshes we will get subdivision schemes which have higher smoothness away from iso-
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Mask for interior vertices
00—
1 3
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Mask for boundary vertices
Figure 4.13: Midedge subdivision. The coefficients are defined by the formuta erT:o 27 cos@,
n=[%| fori=0...k—1

0 0 0
Figure 4.14: The subdivision stencil for Doo-Sabin subdivision in the regular case (left). It can be
understood as midpoint subdivision followed by averaging. At the averaging step the centroid of each
face is computed; then the barycenters are connected to obtain a new mesh. This procedure generalizes

without changes to arbitrary meshes.
lated points on the surface. Unfortunately, smoothness at the extraordinary vertices (for primal schemes)
and at the centroids of faces (for dual schemes) remains, in ge@éral,

Our observations are summarized in the following table:
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0

0

0

Figure 4.15:The subdivision stencil for Midedge subdivision in the regular case (left). It can be under-
stood as a sequence of averaging steps; at each step, two vertices are averaged.

centroid averaging stepgs  scheme smoothness in regular case
0 midpoint cO
1 Doo-Sabin ct
2 Catmull-Clark c?
3 Bi-Quiartic cs
4

Biquartic subdivision scheme is a new dual scheme that is obtained by applying three centroid averaging
steps after midpoint subdivision, as illustrated in Figure 4.16. As this scheme was not discussed before,
we discuss it in greater detail here.

Generalized Biquartic Subdivision. The centroid averaging steps provide a nice theoretical way of
deriving a new scheme, however, in practice we may want to use the complete masks directly (in par-
ticular, if we have to implement adaptive subdivision). Figure 4.16 shows the support of the stencil for
Biguartic b-spline subdivision in the regular case (leftmost stencil).

Note that Biquartic subdivision can be implemented with very little additional work, compared to
Doo-Sabin or Midedge. In an implementation of dual subdivision, vertices are organized as quadtrees. It
is then natural to compute all four children of a given vertex at the same time. Considering the stencils
for Doo-Sabin or the Midedge scheme we see that this implies access to all vertices of the faces incident
to a given vertex. If these vertices have to be accessed we may as well use non-zero coefficients for
all of them for each child to be computed. Qu [23] was the first to consider a generalization of the
Biguartic B-splines to the arbitrary topology setting. He derived some conditions on the stencils but did
not give a concrete set of coefficients. Repeated centroid averaging provides a simple way to derive the
coefficients. It is possible to show that the resulting schen®? ist extraordinary vertices. Assuming
that only one of the incident faces for a vertex is extraordinary, we can write the subdivision masks for
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Doo-Sabin points
averages

. (.

Figure 4.16: The subdivision stencil for bi-quartic b-splines (top row for the regular setting) can be
written as a sequence of averaging steps. In a first step Doo-Sabin points are computed. These are
subsequently averaged twice to arrive at the final point. This effects a factorization of the original mask
(left) into a sequence of pure averaging steps. The same procedure is repeated using as an example a
setting in which one incident face has valestd (bottom row).

vertices near extraordinary faces in a more explicit form. There are three different masks for the four
children (Figure 4.17). This is in contrast to the Doo-Sabin and Midedge schemes which have only
one mask type for all children (modulo rotation). Vertices incident to the extraordinary faces contribute

\ \ \

W 15 5 ng 35 25 s§ 7 5
nV\b hq) S%
nw _, ng 4 S&-1
\ . \ . \
15 51 10 3 79 50 7 91 50
o
5 10 1 1 10 5 5 50 25

Figure 4.17:Generalized Biquartic compound masks for the north-west (nw), north-east (ne), and south-
east (se) children of the center vertex. The south-west mask is the reflected (along the diagonal) version
of the ne mask. All weights must be normalized 856 and the weights for the extraordinary vertices

must be added. They are given in equation 4.5.
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additional weights as

64
nw = ?+4&Ni +16wi_1 + 16w, 1
ng = 32w +16w_1
se = 1low, (4.5)

wherew; are the Doo-Sabin weights=0,... ,k— 1 and indices are taken modwko

4.8 Comparison of Schemes

In this section we compare different schemes by applying to a variety of meshes. First, we consider
Loop, Catmull-Clark, Modified Butterfly and Doo-Sabin subdivision.

Figure 4.18 shows the surfaces obtained by subdividing a cube. Not surprisingly, Loop and Catmull-
Clark subdivision produce more pleasing surfaces, as these schemes re@daplioes on a regular
mesh. As all faces of the cube are quads, Catmull-Clark yields the nicest surface; the surface generated
by the Loop scheme is more asymmetric, because the cube had to be triangulated before the scheme
could be applied. At the same time, Doo-Sabin and Modified Butterfly reproduce the shape of the cube
more closely. The surface quality is worst for the Modified Butterfly scheme, which interpolates the
original mesh. We observe that there is a tradeoff between interpolation and surface quality: the closer
the surface is to interpolating, the lower the surface quality.

Figure 4.19 shows the results of subdividing a tetrahedron. Similar observations hold in this case.
In addition, we observe extreme shrinking for the Loop and Catmull-Clark subdivision schemes. This
is a characteristic feature of approximating schemes: for small meshes, the resulting surface is likely to
occupy much smaller volume than the original control mesh.

Finally, Figure 4.20 demonstrates that for sufficiently “smooth” meshes, with uniform triangle size
and sufficiently small angles between adjacent faces, different schemes may produce virtually indistin-
guishable results. This fact might be misleading however, especially when interpolating schemes are
used; interpolating schemes are very sensitive to the presence of sharp features and may produce low
quality surfaces for many input meshes unless an initial mesh smoothing step is performed.

Overall, Loop and Catmull-Clark appear to be the best choices for most applications, which do not
require exact interpolation of the initial mesh. The Catmull-Clark scheme is most appropriate for meshes
with a significant fraction of quadrilateral faces. It might not perform well on certain types of meshes,
most notably triangular meshes obtained by triangulation of a quadrilateral mesh (see Figure 4.21). The
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Loop scheme performs reasonably well on any triangular mesh, thus, when triangulation is not objec-
tionable, this scheme might be preferable. There are two main reasons why a quadrilateral scheme may
be preferable: natural texture mapping for quads, and a natural number of symmetries (2). Indeed, many
objects and characters have two easily identifiable special directions (“along the axis of the object” and
“perpendicular to the axis”). The mesh representing the object can be aligned with these directions. Ob-
jects with three natural directions, that can be used to align a triangular mesh with the object, are much

less common.

Loop Butterfly

Catmull-Clark Doo-Sabin

Figure 4.18: Results of applying various subdivision schemes to the cube. For triangular schemes (Loop
and Butterfly) the cube was triangulated first.
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Butterfly

Catmull-Clark Doo-Sabin

Figure 4.19: Results of applying various subdivision schemes to a tetrahedron.

4.8.1 Comparison of Dual Quadrilateral Schemes

Dual quadrilateral schemes are the only class of schemes with several members: Doo-Sabin, Midedge,

Biquartic. In this section we give some numerical examples comparing the behavior of different dual
quadrilateral subdivision schemes.

Much about a subdivision scheme is revealed by looking at the associated basis functions, i.e., the
result of subdividing an initial control mesh which is planar except for a single vertex which is pulled out
of the plane. Figure 4.22 shows such basis functions for Midedge, Doo-Sabin, and the Biquartic scheme
in the vicinity of ak-gon fork = 4 andk = 9. Note how the smoothness increases with higher order. The
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Loop Butterfly Catmull-Clark Doo-Sabin

Figure 4.20: Different subdivision schemes produce similar results for smooth meshes.

Catmull-Clark,after
triangulation

Initial mesh Loop Catmull-Clark

Figure 4.21: Applying Loop and Catmull-Clark subdivision schemes to a model of a chess rook. The
initial mesh is shown on the left. Before the Loop scheme was applied, the mesh was triangulated.
Catmull-Clark was applied to the original quadrilateral model and to the triangulated model; note the
substantial difference in surface quality.
distinction is already apparent in the cdse 4, but becomes very noticeable foe 9.

Figure 4.23 provides a similar comparison showing the effect of different dual quadrilateral subdi-
vision schemes when the control polyhedron is a simple cube (compare to 4.18). Notice the increasing
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Figure 4.22:Comparison of dual basis functions for a 4-gon (the regular case) on top and a 9-gon on
the bottom. On the left the Midedge scheme (Warren/Habib variant), followed by the Doo-Sabin scheme
and finally by the Biquartic generalization. The increasing smoothness is particularly noticeable in the
9-gon case.

shrinkage with increasing smoothness. Since averages are convex combinations, the more averages are
cascaded the more shrinkage can be expected.

Figure 4.24 shows a pipe shape with boundaries showing the effect of boundaries in the case of
Midedge, Doo-Sabin and the Biquartic scheme.

Finally, Figure 4.25 shows the control mesh, limit surface and an adaptive tesselation blowup for a
head shape.



90

Figure 4.23:Comparison of dual subdivision schemes (Midedge, Doo-Sabin, Biquartic) for the case of a
cube. The control polyhedron is shown in outline. Notice how Doo-Sabin and even more so the Biquartic
scheme exhibit considerable shrinkage in this case, while the difference between Midedge and Doo-Sabin
is only slight in this example.

Figure 4.24:Control mesh for a three legged pipe (left). The red parts denote the control mesh for Mid-
edge and Doo-Sabin, while the additional green section is necessary to have a complete set of boundary
conditions for the bi-quartic scheme. The resulting surfaces in order: Midedge, Doo-Sabin, and Biquar-
tic. Note the pinch point visible for Midedge and the increasing smoothness and roundness for Doo-Sabin
and Biquatrtic.

4.9 Tilings

The classification that we have described in the beginning of the chapter, captures most known schemes.
However, new schemes keep appearing, and some of the recent schemes do not fit well into this classi-
fication. It can be easily extended to handle a greater variety of schemes, if we include other refinement
rules, in addition to vertex and face splits.

The starting point for refinement rules are tbehedral tilingsand their dual tilings. A tiling is called
isohedral, or Laves, if all tiles are identical, and for any vertex the angles between successive edges
meeting at the vertex are equal.

In general, there are 11 tilings of the plane, shown in Figure 4.26; their dual tilings, obtained by con-
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Figure 4.25:An example of adaptive subdivision. On the left the control mesh, in the middle the smooth
shaded limit surface and on the right a closeup of the adaptively triangulated limit surface.

necting the centers of the tiles are called Archimedean tilings, and are shown in Figure 4.27. Archimedean
tilings consist of regular polygons. We will refer to Laves and Archimedean tilings as regular tilings.
Generalizing the idea of refinement rules to arbitrary regular tilings, we say that a refinement rule is an
algorithm to obtain a finer regular tiling of the same type from a given regular tiling. This definition

is quite general, and it is not known what all possible refinement rules are. The finer tiling is a scaled
version of the initial tiling; the scaling factor can be arbitrary. For vertex and face splits, it is 2.

In practice, we are primarily interested in refinement rules that generalize well to arbitrary meshes.
Face and vertex splits are examples of such rules. Three more exotic refinement rules have been consid-
ered: honeycomb refinement3 refinement and bisection.

Honeycomb refinement [8] shown in Figure 4.28, can be regarded as dual to the face split applied
to the triangular mesh. While it is possible to design stationary schemes for honeycomb refinement, the
scheme described in [8] is not stationary.

The v/3 refinement [12], when applied to the regular triangulation of the plah8li(®y), produces a
tiling scaled by the factox/3 (Figure 4.29). The subdivision scheme described in [12] is stationary and
produce<C? subdivision surfaces on regular meshes.

Bisection, a well-known refinement technique often used for finite-element mesh refinement, can be
used to refine 4 k meshes [32, 31]. The refinement process for the reguBrtiding is illustrated in
Figure 4.30. Note that a single refinement step results in a new tiling scalg@ byjs shown in [30],
Catmull-Clark and Doo-Sabin subdivision schemes, as well as some higher order schemes based on face
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3?.4.3.4

36

or vertex splits, can be decomposed into sequences of bisection refinement steps/3Bwtt 4— k
subdivision have the advantage of approaching the limit surface more gradually. At each subdivision
step, the number of triangles triples and doubles respectively, rather then quadruple, as is the case for face
split refinement. This allows finer control of the approximation. In addition, adaptive subdivision can be
easier to implement, if edge-based data structures are used to represent meshes (see also Chapter 5).
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F.4.3.4
while overcoming certain problems inherent in spline representations, still has

Figure 4.27: 11 Archimedean tilings, dual to Laves tilings.
a number of limitations. Most problems are much more apparent for interpolating schemes than for

approximating schemes. In this section we briefly discuss a number of these problems.

4.10 Limitations of Stationary Subdivision

Stationary subdivision
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Figure 4.28: Honeycomb refinement. Old vertices are preserved, and 6 new vertices are inserted for

each face.

Figure 4.29: v/3 refinement. The barycenter is inserted into each triangle; this result8ia2 tiling.
Then the edges are are flipped, to produce a 8&wiling, which is scaled by/3 and rotated by 30
degrees with respect to the original.

Figure 4.30: Bisection on a 4-8 tiling: the hypotenuse of each triangle is split. The resulting tiling is a
new 4-8 mesh, shrunk hy2 and rotated by 45 degrees.

Problems with Curvature Continuity. While it is possible to obtain subdivision schemes which are
C2-continuous, there are indications that such schemes either have very large support [24, 21], or nec-
essarily have zero curvature at extraordinary vertices. A compromise solution was recently proposed by
Umlauf [22]. Nevertheless, this limitation is quite fundamental: degeneracy or discontinuity of curvature
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typically leads to visible defects of the surface.

Decrease of Smoothness with Valence.For some schemes, as the valence increases, the magnitude of
the third largest eigenvalue approaches the magnitude of the subdominant eigenvalues. As an example

we consider surfaces generated by the Loop scheme near vertices of high valence. In Figure 4.31 (right
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Figure 4.31: Left: ripples on a surface generated by the Loop scheme near a vertex of large va-
lence; Right: mesh structure for the Loop scheme near an extraordinary vertex with a significant “high-
frequency” component; a crease starting at the extraordinary vertex appears.

side), one can see a typical problem that occurs because of “eigenvalue clustering:” a crease might
appear, abruptly terminating at the vertex. In some cases this behavior may be desirable, but our goal is
to make it controllable rather than let the artifacts appear by chance.

Ripples. Another problem, presence of ripples in the surface close to an extraordinary point, is also
shown in Figure 4.31. It is not clear whether this artifact can be eliminated. It is closely related to the

curvature problem.

Uneven Structure of the Mesh. On regular meshes, subdivision matricesCéfcontinuous schemes
always have subdominant eigenvaly@ 1When the eigenvalues of subdivision matrices near extraordi-
nary vertices significantly differ from/2, the structure of the mesh becomes uneven: the ratio of the size
of triangles on finer and coarser levels adjacent to a given vertex is roughly proportional to the magnitude
of the subdominant eigenvalue. This effect can be seen clearly in Figure 4.33.
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Optimization of Subdivision Rules. It is possible to eliminate eigenvalue clustering, as well as the
difference in eigenvalues of the regular and extraordinary case by prescribing the eigenvalues of the
subdivision matrix and deriving suitable subdivision coefficients. This approach was used to derive
coefficients of the Butterfly scheme.

As expected, the meshes generated by the modified scheme have better structure near extraordinary
points (Figure 4.32). However, the ripples become larger, so one kind of artifact is traded for another. It
is, however, possible to seek an optimal solution or one close to optimal; alternatively, one may resort to
a family of schemes that would provide for a controlled tradeoff between the two artifacts.
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Chapter 5

Implementing Subdivision and
Multiresolution Surfaces

Denis Zorin, New York University
Peter Scloder, Caltech

5.1 Data Structures for Subdivision

In this section we briefly describe some considerations that we found useful when choosing appropriate
data structures for implementing subdivision surfaces. We will consider both primal and dual subdivision
schemes, as well as triangle and quadrilateral based schemes.

5.1.1 Representing Arbitrary Meshes

In all cases, we need to start with data structures representing the top-level mesh. For subdivision
schemes we typically assume that the top level mesh satisfies several requirements that allow us to apply
the subdivision rules everywhere. These requirements are

e no more than two polygons share an edge;

¢ all polygons sharing a vertex form an open or closed neighborhood of the vertex; in other words,
can be arranged in such an order that two sequential polygons always share an edge.

A variety of representations were proposed in the past for general meshes of this type, sometimes with
some of the assumptions relaxed, sometimes with more assumptions added, such as orientability of the
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surface represented by the mesh. These representations include winged edge, quad edge, half edge end
other data structures. The most common one is the winged edge. However, this data structure is far from
being the most space efficient and convenient for subdivision. First, most data that we need to store in a
mesh, is naturally associated with vertices and polygons, not edges. Edge-based data structures are more
appropriate in the context of edge-collapse-based simplification. For subdivision, it is more natural to
consider data structures with explicit representations for faces and vertices, not for edges. One possible
and relatively simple data structure for polygons is

struct Polygon{
vector<Vertex*>  vertices;
vector<Polygon*> neighbors;
vector<short> neighborEdges;

}

For each polygon, we store an array of pointers to vertices and an array of adjacent polygons (neighbors)
across corresponding edge numbers. We also need to know for each edge what the corresponding edge
number of that edge is, when seen from the neighbor across that edge. This information is stored in the
arrayneighborEdges (see Figure 5.1). In addition, if we allow non-orientable surfaces, we need to

Figure 5.1:A polygon is described by an array of vertex pointers and an array of neighbor pointers (one
such neighbor is indicated in dotted outline). Note that the neighbor has its own edge number assignment
which may differ across the shared edge.

keep track of the orientation of the neighbors, which can be achieved by using signed edge numbers in
the arrayneighorEdges . To complete the mesh representation, we add a data structure for vertices to
the polygon data structure.
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Let us compare this data structure to the winged edge. PLie¢ the number of polygons in the
meshV the number of vertices artel the number of edges. The storage required for the polygon-based
data structure is approximately52 P - Vp 32-bit words, wher&/p is the average number of vertices per
polygon. Here we assuming that all polygons have fewer th&edyges, so only 2 bytes are required to
store the edge number. Note that we disregard the geometric and other information stored in vertices and
polygons, counting only the memory used to maintain the data structure.

To estimate the value of.2- P-Vp in terms ofV, we use the Euler formula. Recall that any mesh
satisfiesV — E 4+ P = g, whereg is the genus, the number of “holes” in the surface. Assuming genus
small compared to the number of vertices, we get an approximate eqWvatiof + P = 0; we also
assume that the boundary vertices are a negligible fraction of the total number of vertices. Each polygon
on the average ha# vertices and the same number of edges. Each edge is shared by two polygons
which results inE =Vp-P/2. LetR, be the number of polygons per vertex. THee= R, -V /Vp, and
E =V R//2. This leads to

1 1 1
R + Ve =5 (5.1)

In addition, we know tha¥p, the average number of vertices per polygon, is at least 3. It follows from
(5.1) thatR, < 6. Therefore, the total memory spent in the polygon data structur&is 2V < 15V.

The winged edge data structure requires 8 pointers per edge. Four pointers to adjacent edges, two
pointers to adjacent faces, and two pointers to vertices. Given that the total number oEaslgesater
than 3/, the total memory consumption is greater thal 2dignificantly worse than the polygon data
structure.

One of the commonly mentioned advantages of the winged edge data structure is its constant size. It
is unclear if this has any consequence in the context of C++: it is relatively easy to create structures with
variable size. However, having a variety of dynamically allocated data of different small sizes may have
a negative impact on performance. We observe that after the first subdivision step all polygons will be
either triangles or quadrilaterals for all schemes that we have considered, so most of the data items will
have fixed size and the memory allocation can be easily optimized.

5.1.2 Hierarchical Meshes: Arrays vs. Trees

Once a mesh is subdivided, we need to represent all the polygons generated by subdivision. The choice
of representation depends on many factors. One of the important decisions to make is whether adaptive
subdivision is necessary for a particular application or not. To understand this tradeoff we need to
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estimate the storage associated with arrays vs. trees. To make this argument simple we will consider
here only the case of triangle based subdivision such as Loop or Butterfly. The counting arguments for
guadrilaterals schemes (both primal and dual) are essentially similar.

Assuming that only uniform subdivision is needed, all vertices and triangles associated with each
subdivided top-level triangle can be represented as a two-dimensional array. Thus, the complete data
structure would consist of a representation of a top level mesh, with each top level triangle containing a
2D array of vertex pointers. The pointers on the border between two top-level neighbors point pairwise
to the same vertices. The advantage of this data structure is that it has practically no pointer overhead.
The disadvantage is that a lot of space will be wasted if adaptive subdivision is performed.

If we do want adaptive subdivision and maintain efficient storage, the alternative is to use a tree
structure. Each non-leaf triangle becomes a node in a quadtree, containing a pointer to a block of 4
children and pointers to three corner vertices

class TriangleQuadTree{
Vertex* vl, v2, v3;
TriangleQuadTree* firstChild;

Comparison. To compare the two approaches to organizing the hierarchies (arrays and trees), we need
to compare the representation overhead in these two cases. In the first case (arrays) all adjacency relations
are implicit, and there is no overhead. In the second case, there is overhead in the form of pointers
to children and vertices. For a given number of subdivision steffee total overhead can be easily
estimated. For the purposes of the estimate we can assume that the genus of our initial control mesh is
0, so the number of triangld? the number of edgels and the number of verticds in the initial mesh

are related by? — E+V = 0. The total number of triangles in a complete tree of deptbr P initial

triangles is given by (4" —1)/3. For a triangle mestb = 3 andR, = 6 (see Eq. (5.1)); thus, the total
number of triangles i® = 2V, and the total number of edgeshs= 3V.

For each leaf and non-leaf hode we need 4 words (1 pointer to the block of children and three point-
ers to vertices). The total cost of the structure B§4#+1 —1)/3 = 8V (4™! — 1)/3 words, which is
approximately 11V -4".

To estimate when a tree is spatially more efficient than an array, we determine how many nodes have
to be removed from the tree for the gain from the adaptivity to exceed the loss from the overhead. For
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this, we need a reasonable estimate of the size of the useful data stored in the structures, otherwise the
array will always win.

The number of vertices inserted on subdivision stepapproximately 34'-1V. Assuming that for
each vertex we store all control points on all subdivision levels, and each control point takes 3 words, we
get the following estimate for the control point storage

3V ((N+1)+3n+3-42(n-1)+...4") =V (4" -1).

The total number of vertices ¥ - 4"; assuming that at each vertex we store the normal vector, the limit
position vector (3 words), color (3 words) and some extra information, such as subdivision tags (1 word),
we get 7-V - 4" more words. The total useful storage is approximateiW14", the same as the cost of

the structure.

Thus for our example the tree introduces a 100% overhead, which implies that it has an advantage
over the array if at least half of the nodes are absent. Whether this will happen, depends on the criterion
for adaptation. If the criterion attempts to measure how well the surface approximates the geometry,
and if only 3 or 4 subdivision levels are used, we have observed that fewer than 50% of the nodes were
removed. However, if different criteria are used (e.g. distance to the camera) the situation is likely to be
radically different. If more subdivision levels are used it is likely that almost all nodes on the finest level
are absent.

5.1.3 Implementations

In many settings tree-based implementations, even with their additional overhead, are highly desirable.
The case of quadtrees for primal triangle schemes is covered in [40] (this article is reprinted at the end of
this chapter). The machinery for primal quadrilateral schemes (e.g., Catmull-Clark) is very similar. Here
we look in some more detail at quadtrees for dual quadrilateral schemes. Since these are based on vertex
splits the natural organization are quadtrees based on venitéaces. As we will see the two trees

are not that different and an actual implementation easily supports both primal and dual quadrilateral
schemes. We begin with the dual quadrilateral case.

Representation

At the coarsest level the input control mesh is represented as a general mesh as described in Section 5.1.1.
For simplicity we assume that the control mesh satisfies the property that all vertices have valence four.
This can always be achieved through one step of dual subdivision. The valence four assumption allows
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us to use quadtrees for the organization of vertices without an extra layer for the coarsest level. In fact we
only have to organize a forest of quadtrees. Each quadtree root maintains four pointers to neighboring

guadtrees roots

class QTreeR{
QTreeR*  n[4]; /I four neighbors
QTree* root; /I the actual tree

}

A quadtree is given as

class QTree{

QTree* p; I/l parent

QTree* cl4]; /[ children
Vector3D dual; /I dual control point
Vector3D* primal[4]; // shared corners

}

The organization of these quadtrees is depicted in Figure 5.2. Both primal and dual subdivision can

Figure 5.2:Quadtrees carry dual control points (left). We may think of every quadtree element as de-
scribing a small rectangular piece of the limit surface centered at the associated control point (compare
to Figure 5.3). The corners of those quads correspond to the location of primal control points (right) in

a primal quadrilateral subdivision scheme. As usual these are shared among levels.

now be effected by iterating over all faces and repeatedly averaging to achieve the desired order of
subdivision [34, 30]. Alternatively one may apply subdivision rules in the more traditional setup by
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primal

dual

Figure 5.3:Given some arbitrary input mesh we may associate limit patches of dual schemes with vertices
in the input mesh while primal schemes result in patches associated with faces. Here we see examples of
the Catmull-Clark (top) and Doo-Sabin (bottom) acting on the same input mesh (left).

collecting the 1-ring of neighbors of a given control point (primal or dual). Collecting a 1-ring requires
only the standard neighbor finding routines for quadtrees [27]. If the neighbor finding routine crosses
from one quadtree to another the quadtree root links are used to effect this transition. Nil pointers indicate
boundaries. With the 1-ring in hand one may apply stencils directly as indicated in Chapter 4. Using 1-
rings and explicit subdivision masks, as opposed to repeated averaging, significantly simplifies boundary
treatments and adaptivity.

Boundariesare typically dealt with in primal schemes using special boundary rules (see Chapter 4). For
example, in the case of Catmull-Clark one can ensure that the outermost row of control vertices describes
an endpoint interpolating cubic spline (see, e.g., [2]). For dual schemes, for example Doo-Sabin, a
common solution is to replicate boundary control points (for other possibilities see the references in
Chapter 4).

Constructing higher order quadrilateral subdivision schemes through repeated averaging will result
in increasing shrinkage. This is true both for closed control meshes (see Figure 4.23) and for boundaries
(see Figure 4.24). To address the boundary issue the repeated averaging steps may be modified there
or one could simply drop the order of the method near the boundary. For example, in the case of the
Biquartic scheme one may use the Doo-Sabin rules whenever a complete 1-ring is not available. This
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leads to lower order near the boundary but avoids excessive shrinkage for high order methods. Which
method is preferable depends heavily on the intended application.

t
LR

not restricted edge restricted vertex restricted crackfree tesselation crackfree triangulation
Figure 5.4:0n the left an unrestricted adaptive primal quadtree. Arrows indicate edge and vertex neigh-
bors off by more than 1 level. Enforcing a standard edge restriction criterion enforces some additional
subdivision. A vertex restriction criterion also disallows vertex neighbors off by more than 1 level. Fi-
nally on the right some adaptive tesselations which are crack-free.

Adaptive Subdivision, as indicated earlier, can be valuable in some applications and may be mandatory
in interactive settings to maintain high frame rates while escaping the exponential growth in the number
of polygons with successive subdivisions. We first consider adaptive tesselations for primal quad schemes
and then show how the same machinery applies to dual quad schemes.

To make such adaptive tesselations manageable it is common to enforce a restriction criterion on the
guadtrees, i.e, no quadtree node is allowed to be off by more than one subdivision level from its neigh-
bors. Typically this is applied only tedgeneighbors, but we need a slightly stronger criterion covering
all neighbors, i.e., including those sharing only a common vertex. This criterion is a consequence of the
fact that to compute a control point at a finer level we need a complete subdivision stencil at a courser
level. for primal schemes, it means that if a face is subdivided, all faces sharing a vertex with it must be
present. This idea is illustrated in Figure 5.4

Once a vertex restricted adaptive quadtree exists one must take care to output quadrilaterals or trian-
gles in such a way that no cracks appear. Since all rendering is done with triangles we consider crack-free
output of a triangulation only. This requires the insertion of diagonals in all quadrilaterals. One can make
this choice randomly, but surfaces appear “nicer” if this is done in a regular fashion. Figure 5.5 illustrates
this on the top for a group of four children of a common parent. Here the diagonals are chosen to meet
at the center. The resulting triangulation is exactly the basic element of a 4-8 tiling [30]. To deal with
cracks we distinguish 16 cases. Given a leaf quadrilateral its edge neighbors may be subdivided once
less, as much, or once more. Only the latter case gives rise to potential cracks from the point of view
of the leaf quad. The 16 cases are easily distinguished by considering a bit flag for each edge indicating
whether the edge neighbor is subdivided once more or not. Figure 5.5 shows the resulting templates
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Canonical case

4 children triangul ated
Templates for the adaptive case
[ [ §
no neighbors 1 neighbor 2 neighbors
subdivided subdivided subdivided
(1 case) (4 cases) (4 cases)

2 neighbors 3 neighbors 4 neighbors
subdivided subdivided subdivided
(2 cases) (4 cases) (1 case)

Figure 5.5:The top row shows the standard triangulation for a group of 4 child faces of a single face
(face split subdivision). The 16 cases of adaptive triangulation of a leaf quadrilateral are shown below.
Any one of the four edge neighbors may or may not be subdivided one level finer. Using the indicated
templates one can triangulate an adaptive primal quad tree with a simple lookup table.

(modulo symmetries). These are easily implemented as a lookup table.

For dual quadrilateral subdivision schemes crack-free adaptive tesselations are harder to generate.
Recall that in a dual quad scheme a quadtree node represents a control point, not a face. It potentially
connects to all 8 neighbors (see Figure 5.6, left). Consequently there are 256 possible tesselations de-
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adaptive vertex hierarchy polygonal mesh centroid mesh

update coarse-level centroids update fine-level centroids
Figure 5.6: To produce a polygonal mesh for a restricted vertex-split hierarchy (top row, left), rather
than trying to generate the mesh connecting the vertices (top row, middle) of the mesh, we generate
the mesh connecting the centroids of the faces (top row, right). Centroids are associated with corners
at subdivision levels. To compute centroids correctly, we traverse the vertices in the vertex hierarchy,
and add contributions of the vertex to the centroids associated with the vertex (bottom row, left) and
centroids associated with the corners attached to the children of a neighbor (bottom row, right). The
choice of coefficients guarantees that centroids are found correctly.

pending on 8 neighbor states.

To avoid this explosion of cases we instead choose to draw (or output) a tesselation of the centroids
of the dual control points. These live at corners again, so the adaptive tesselation machinery from the
primal setting applies. This approach has the added benefit of producing samples of the limit surface
for the Doo-Sabin and Midedge scheme. For the Biquartic scheme, unfortunately, limit points are not
centroids of faces. Note that this additional averaging step is only performed during drawing or output
and does not change the overall scheme. Figure 5.6 (right) shows how to form the additional averages
in an adaptive setting. With these drawing averages computed we apply the templates of Figure 5.5 to
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render the output mesh. Figure 4.25 shows an example of such an adaptively rendered mesh.
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arbitrary topology setting and across a continuous range of scales
and hardware resources.

We describe a multiresolution representation for meshes based on

subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-
ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-
ing algorithms for refinement and coarsification enables us to make
them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction

Applications such as special effects and animation require creation
and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizing methods.
The latter is a common source of data particularly in the entertain-
ment industry. When using laser range scanners, for example, indi-
vidual models are often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in
these cases, is challenging to achieve. Even without accounting for
any computation on the mesh itself, available rendering resources
alone, may not be able to cope with the sheer size of the data. Pos
sible approaches include mesh optimization [15, 13] to reduce the
size of the meshes.

Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-
mantics. The representation of the mesh needs to provide con-
trol at a large scale, so that one can change the mesh in a broad
smooth manner, for example. Additionally designers will typi-
cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

*dzorin@gg.caltech.edu
Tps@cs.caltech.edu
fwim@bell-labs.com

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of delivering multiple frames
per second update rates even on small workstations taking advan-
tage of lower resolution representations.

" In this paper we present a system which possesses these proper-
ties
e Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

e Simplicity/uniformity: A single primitive, triangular mesh, is

used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitrary topology sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user’s expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches

H-splines  were presented in pioneering work on hierarchical

editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the



coarser patch. Repeating this process, one can build very compli- As more fine level detail is needed the proliferation of control
cated shapes which are entirely parameterized over the unit squarepoints and patches can quickly overwhelm both the user and the
Forsey and Bartels observed that the hierarchy induced coordinatemost powerful hardware. With detail at finer levels, patches become
frame for the offsets is essential to achieve correct editing seman-less suited and polygonal meshes are more appropriate.

tics. ;
. . . . Polygonal Meshes  can represent arbitrary topology and re-
H-splines provide a uniform framework for representing both the ¢ye fine detail as found in laser scanned models, for example.
coarse and fine level details. Note however, that as more detail Gjyen that most hardware rendering ultimately resolves to triangle
is added to such a model the internal control mesh data structureSs.,n_conversion even for patches, polygonal meshes are a very ba-
more and more resemble a fine polyhedral mesh. sic primitive. Because of sheer size, polygonal meshes are difficult

While their original implementation allowed only for regular 1 manipulate interactively. Mesh simplification algorithms [13]
topologies their approach could be extended to the general Semngprovide one possible answer. However, we need a mesh simpli-

by using surface splines or one of the spline derived general topol- fication approach, that is hierarchical and gives us shape handles

ogy subdivision schemes [18]. However, these schemes have N0k, smooth changes over larger regions while maintaining high fre-
yet been made to work adaptively. quency details.

Forsey and Bartels’ original work focused on the ab initio de-
sign setting. There the user’s help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model itis crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as thanalysisalgorithm. An H-spline analysis al- ; ; ST
gorithm based on weighted least squares was introduced [10], but SRS
is too expensive to run interactively. Note that even in an ab initio
design setting online analysis is needed, since after a long sequence
of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de-
fine multiresolution approximations and fast analysis algorithms.

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisiorconnects and unifies these two extremes.
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Finkelstein and Salesin [9], for example, used B-spline wavelets A@a‘v&‘b‘,
. . . oy . . 4/ 7
to describe multiresolution editing of curves. As in H-splines, pa- (;gs::éxy,ﬂ

rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet Figure 2: Subdivision describes a smooth surface as the limit of a
representations of detail tend to behave in undesirable ways duringsequence of refined polyhedra. The meshes show several levels of
editing and returned to a pure B-spline representation as used inan adaptive Loop surface generated by our system (dataset courtesy
H-splines. Hugues Hoppe, University of Washington).
Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was usedSubdivision  defines a smooth surface as the limit of a sequence
to define the different levels of resolution. The original construc- 0f successively refined polyhedral meshes (cf. Fig. 2). In the reg-
tions were limited to piecewise linear subdivision, but smoother ular patch based setting, for example, this sequence can be defined
constructions are possible [24, 28]. through well known knot insertion algorithms [5]. Some subdi-
An approach to surface modeling based on variational methods vision methods generalize spline based knot insertion to irregular
was proposed by Welch and Witkin [27]. An attractive character- topology control meshes [2, 6, 19] while other subdivision schemes
istic of their method is flexibility in the choice of control points.  are independent of splines and include a number of interpolating
However, they use a global optimization procedure to compute the schemes [7, 28, 16].
surface which is not suitable for interactive manipulation of com-  Since subdivision provides a path from patches to meshes, it can
plex surfaces. serve as a good foundation for the unified infrastructure that we
Before we proceed to a more detailed discussion of editing we seek. A single representation (hierarchical polyhedral meshes) sup-
first discuss different surface representations to motivate our choiceports the patch-type semantics of manipulatioa finest level de-

of synthesis (refinement) algorithm. tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and

1.2 Surface Representations space growth of naive subdivision. This is the core of our contribu-

There are many possible choices for surface representationstion- ) ) o )

Among the most popular are polynomial patches and polygons. We summarize the main features of subdivision important in our
context

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com- e Multiresolution: because they are the limit of successive refine-
pounded in the arbitrary topology setting when polynomial param- ment, subdivision surfaces support multiresolution algorithms,
eterizations cease to exist everywhere. Surface splines [4, 20, 22] such as level-of-detail rendering, multiresolution editing, com-
provide one way to address the arbitrary topology challenge. pression, wavelets, and numerical multigrid.

e Topological Generality: Vertices in a triangular (resp. quadri-
lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.



e Simplicity: subdivision algorithms are simple: the finer mesh m
is built through insertion of new vertices followed bgcal

. Graph with vertices Mesh with points
smoothing. & P

e Uniformity of Representation: subdivision provides a single

. | _ N Je)
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.
i
s(1)

1.3 Our Contribution ! T2 J@

Aside from our perspective, which unifies the earlier approaches, " i+1
our major contribution—and the main challenge in this program— vt T+ s (6) s (3)
is the design of highly adaptive and dynamic data structures and Y T |
algorithms, which allow the system to function across a range of s (5)
computational resources from PCs to workstations, delivering as 0
_much interactive fidelity as _p033|ble with a given polygon_ render- 1 4 2 s (1) s @)
ing performance. Our algorithms work for the class of 1-ring sub- i+1
division schemes (definition see below) and we demonstrate their s (2

performance for the concrete case of Loop’s subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3 Figure 4. Left: the abstract graph. Vertices and triangles are mem-
already gives a preview of how the different algorithms make up bers of setd”* andT™ respectively. Their index indicates the level
the editing system. In the next sections we first talk in more detail of refinement when they first appeared. Right: the mapping to the
about subdivision, smoothing, and multiresolution transforms. mesh and its subdivision in 3-space.

A s
. oY) 3 i H
Adaptive synthesis each _Ievelz we ha.veva 3D point*(v) € R”. _The sets' contains
all points on levet, s* = {s*(v) | v € V"'}. Finally, asubdivision
Bedin droo schemas a linear operatof which takes the points from levéto
€gin dragaing points on thdiner leveli 4+ 1: s*t! = §s°

Assuming that the subdivision converges, we can define a limit
Select group of vertices Create dependent surfaces as
at level i submesh T k 0
o= lim S"s".

k—o0

refinement

UOSIAIDGNS

With each sel/* we associate a map, i.e., for each veneand

Release selection

Local analysis

s m—

Local synthesis

a(v) € R? denotes the point on the limit surface associated with
vertexv.

In order to define our offsets with respect to a local frame we also
need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operatorg) and R acting ons® so thatg’(v) = (Qs")(v)

, . . . andr‘(v) = (Rs")(v) are linearly independent tangent vectors at

Figure 3: The relat_lonshlp between various procedures as the usera(v). gI'o)(\;)eth<er Wi)t<h ;n orientatign the)?define a Ioc?al orthonormal

moves a set of vertices. B s ; ; o

frame F*(v) = (n'(v),q"(v),r*(v)). Itis important to note that

in general it is not necessary to use precise normals and tangents

during editing; as long as the frame vectors are affinely related to

2 Subdivision Lhehpo_sitions of vertices of the mesh, we can expect intuitive editing
ehavior.

We begin by defining subdivision and fixing our notation. There are

2 points of view that we must distinguish. On the one hand we are

dealing with an abstragiraph and perform topological operations

on it. On the other hand we havengeshwhich is the geometric

object in 3-space. The mesh is the image of a map defined on the

graph: it associates point in 3D with everyvertexin the graph

(cf. Fig. 4). Atriangle denotes a face in the graph or the associated

polygon in 3-space.

Initially we have a triangular grapf® with verticesV°. By 1-ring at level i 1-ring at level i+1
recursivelyrefining each triangle into 4 subtriangles we can build
a sequence of finer triangulatios' with verticesV*, i > 0
(cf. Fig. 4). The superscriptindicates thdevel of triangles and
vertices respectively. A triangle € T is a triple of indices
t = {va, vp,vc} C V"

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge

The vertex sets are nested ®é C V' if j < i. We define (right).
odd vertices on levet asM*® = Vi1 \ V. V! consists of two
disjoint sets:evenvertices {*) andodd vertices (//*). We define Next we discuss two common subdivision schemes, both of
thelevelof a vertexv as the smallestfor whichv € V*. The level which belong to the class df-ring schemes In these schemes

ofvisi+ 1ifand only ifv € M*. points at level 4+ 1 depend only on 1-ring neighborhoods of points



at leveli. Letv € V* (v even) then the poing’™ (v) is a function Because of its computational simplicity we decided to use a version
of only thoses'(v,,), v, € V*, which are immediate neighbors ~ of Taubin smoothing. As before let € V* have K neighbors

of v (cf. Fig. 5 lefUmiddle). Ifm € M? (m odd), itis the vertex ~ wvx € V. Use the average; (v) = K>, s*(vs), to define
inserted when splitting an edge of the graph; we call such vertices the discrete Laplaciaf(v) = 5°(v) — s'(v). On this basis Taubin

middle verticeof edges. In this case the poisit™ (i) is a func- gives a Gaussian-like smoother which does not exhibit shrinkage
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right). H:=(I+upL)(I+XL).

1
1 transform needed to support multiresolution editing. Recall that
for multiresolution editing we want the difference between succes-
’ 1 3 3 sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.
g With each vertexw and each level > 0 we associate detail
1 1 vector, d*(v) € R?. The setd’ contains all detail vectors on levil
d' = {d'(v) | v € V*}. Asindicated in Fig. 7 the detail vectors

: . L . ) ) are defined as
Figure 6: Stencils for Loop subdivision with unnormalized weights

for even and odd vertices. d'=(FY' (s"=8s " =(F) (I-SH)s',

|l 1 With subdivision and smoothing in place, we can describe the

_ _ ) o i.e., the detail vectors at leveérecord how much the points at level
Loop is a non-interpolating subdivision scheme based on a gen- ; differ from the result of subdividing the points at levet 1. This
eralization of quartic triangular box splines [19]. For a given even difference is then represented with respect to the local frAfie

vertexv € V', letv, € V' with1l < k < K be itsK 1- obtain coordinate independence.

ring neighbors. The new point ™ (v) is defined as' ' (v) = Since detail vectors are sampled on the fine level méshhis
(a(K) + K) " (a(K) s'(v) + X0, s*(vr)) (cf. Fig. 6),a(K) = transformation yields an overrepresentation in the spirit of the Burt-
K(1—a(K))/a(K), anda(K) = 5/8— (3+2 cos(2r/K))? /64. Adelson Laplacian pyramid [1]. The only difference is that the

smoothing filters (Taubin) are not the dual of the subdivision filter

(Loop). Theoretically it would be possible to subsarr;ple the detalil
K i vectors and only record a detail per odd vertex\éf~". This is

2 cos@m(k + p)/K) 5" (v). what happens in the wavelet transform. However, subsampling the

Features such as boundaries and cusps can be accommodategetails severely restricts the family of smoothing operators that can
through simple modifications of the stencil weights [14, 25, 29]. be used.

For odd v the weights shown in Fig. 6 are used. Two inde-
pendent tangent vectors (v) and tz2(v) are given byt,(v) =

Butterfly is an interpolating scheme, first proposed by Dyn et ’ * i1
al. [7] in the topologically regular setting and recently general- - 1 s
ized to arbitrary topologies [28]. Since it is interpolating we have ’ Smoothing ‘ ’ Subdivision ‘ Y

s*(v) = o(v) for v € V' even. The exact expressions for odd g 4 /J\ d.ggit T d
vertices depend on the valenégand the reader is referred to the I\ F) —

original paper for the exact values [28].
. . . Figure 7: Wiring diagram of the multiresolution transform.
For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.
4 Algorithms and Implementation

3 Multiresolution Transforms Before we describe the algorithms in detail let us recall the overall

So far we only discussed subdivision, i.e., how to go from coarse to structure of the mesh editor (cf. Fig 3). The analysis stage builds
fine meshes. In this section we describe analysis which goes froma succession of coarser approximations to the surface, each with

fine to coarse. fewer control parameters. Details or offsets between successive
We first needsmoothing i.e., a linear operatiorf to build a levels are also computed. In general, the coarser approximations
smooth coarse mesh at level 1 from a fine mesh at level are not visible; only their control points are rendered. These con-
) _ trol points give rise to airtual surfacewith respect to which the

st = Hs' remaining details are given. Figure 8 shows wireframe representa-

tions of virtual surfaces corresponding to control points on levels O,

Several options are available here: 1,and 2.

e Least squares:One could define analysis to be optimal in the When an edit level is selected, the surface is represented inter-

least squares sense, nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the

min ||s" — S s" 1. edit level, while the finer level details remain unchanged relative

si=1 to the coarser level. Meanwhile, the system will use the synthesis

algorithm to render the modified edit level with all the finer details
added in. In between edits, analysis enforces consistency on the
internal representation of coarser levels and details (cf. Fig. 9).
e Fairing: A coarse surface could be obtained as the solutionto  The basic algorithm#\nalysis and Synthesis  are very
a global variational problem. This is too expensive as well. An simple and we begin with their description.
alternative is presented by Taubin [26], who usdecal non- Leti = 0 be the coarsest and= n the finest level withV
shrinking smoothing approach. vertices. For each vertaxand all levels: finer than the first level

The solution may have unwanted undulations and is too expen-
sive to compute interactively [10].



thresholds. Three thresholds control this pruniag:for adaptive
analysis.es for adaptive synthesis, anrg: for adaptive rendering.

To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis

The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysisvoids the storage cost associated
with detail vectors below some threshelg by observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning

For this purpose we need an integef.finest :=
max;{||v.d[i]|| > ea}. Initially v.finest = n and the fol-
lowing precondition holds before callirgnalysis(i)

e The surface is uniformly subdivided to lewgl

Figure 9: Analysis propagates the changes on finer levels to coarser® "0 € V' v.si] = s'(v), .
levels, keeping the magnitude of details under control. Left: The o Yv € V*|i < j <w.finest : v.d[j] = d’(v).
initial mesh. Center: A simple edit on level 3. Right: The effect of Now Analysis(i) becomes:

the edit on level 2. A significant part of the change was absorbed
by higher level details.

Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.

Analysis( 1)
where the vertex appears, there are storage locationss| and i1 . ) . )
v.d[i], each with 3 floats. With this the total storage add8 a3 * :v g “;Z + v.si —1] = smooth (v,4)
v :

(4N/3) floats. In general.s[i] holdss®(v) andv.d[i] holdsd’ (v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingF'(3).

Global analysis and synthesis are performed level wise:

v.d[i] := v.s[i] — subd (v,i — 1)
if w.finest >4 or ||v.d[i]| > ea then
v.dfi] == v.F(i)" * v.d[i]

else
v.finest := i —1

Analysis Synthesis Prune( i —1)

for ¢=mn downto 1 for i=11t n

Analysis( 1) Synthesis( i) Triangles that do not contain details above the threshold are unre-
fined:
With the action at each level described by
Prune( 1)

Analysis( ) vt € T* : If all middle verticesm havem.finest =i — 1

Yo e Vil : v.sfi— 1] = smooth (v, i) and all children are leaves, delete children.

Yo eVt o wdfi] = v.F(i)" * (v.s[i] — subd (v,i — 1))

This results in an adaptive mesh structure for the surface with

and v.dfi] = d'(v) forallv € V% i < v.finest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
Synthesis( 1) can differ in more than one level. Initial analysis has to be followed

by a synthesis pass which enforces restriction.
Yo € Vi swlfi] := v.F(i) * v.d[i] + subd (v,i — 1)

4.2 Adaptive Synthesis
The main purpose of the general synthesis algorithm is to rebuild

Analysis computes points on the coarser lavel 1 using smooth- the finest level of a mesh from its hierarchical representation. Just
ing (smooth ), subdividess’~! (subd ), and computes the detail  as in the case of analysis we can get savings from noticing that in
vectorsd® (cf. Fig. 7). Synthesis reconstructs levdly subdividing flat regions, for example, little is gained from synthesis and one
leveli — 1 and adding the details. might as well save the time and storage associated with synthe-

So far we have assumed that all levels are uniformly refined, i.e., sis. This is the basic idea behiadaptive synthesjsvhich has two
all neighbors at all levels exist. Since time and storage costs grow main purposes. First, ensure the mesh is restricted on each level,
exponentially with the number of levels, this approach is unsuitable (cf. Fig. 10). Second, refine triangles and recompute points until
for an interactive implementation. In the next sections we explain the mesh has reached a certain measure of local flatness compared
how these basic algorithms can be made memory and time efficient.against the threshold;. )

Adaptive and local versions of these generic algorithms (cf. The algorithm recomputes the point§(v) starting from the
Fig. 3 for an overview of their use) are the key to these savings. coarsest level. Not all neighbors needed in the subdivision stencil
The underlying idea is to use lazy evaluation and pruning based onof a given point necessarily exist. Consequently adaptive synthesis



Figure 10: A restricted mesh: the center triangle igfhand its
vertices inV*. To subdivide it we need the 1-rings indicated by the

circular arrows. If these are present the graph is restricted and we

can computes’™?! for all vertices and middle vertices of the center
triangle.

Refine (t,1, dir)

if t.leaf then Create children fot
Yv et :if wv.depth <i+ 1 then
GetRing (v, 1)
Update (v, 1)
VYm € N(v,i+1,1) :
Update (m,1)
if m.finest > i+ 1 then
forced := true
if dir and Flat () < es and not forced then
Delete children ot
else
YVt € current : t.restrict := true

Update (v, 1)
v.s[i + 1] := subd (v, 1)
v.depth : =1+ 1
if wv.finest > i+ 1 then
v.sfi + 1] += v.F(i+ 1) x v.d[i + 1]

lazily creates all triangles needed for subdivision by temporarily re- The conditionv.depth = i + 1 indicates whether an earlier call to
fining their parents, then computes subdivision, and finally deletes Refine ~ already recomputesi**(v). If not, call GetRing (v, i)
the newly created triangles unless they are needed to satisfy theandupdate (v, ) to do so. In case a detail vector livesat level

restriction criterion. The following precondition holds before en-
tering AdaptiveSynthesis

e VtcT7|0<j<i:tisrestricted
e Yo € VI |0<j<wv.depth :v.s[j] = s (v)

wherev.depth := max;{s’(v)has been recomputgd

AdaptiveSynthesis

Yo € VO : v.depth := 0
for i=0to n—1
temptri = {}
VteT :
current = {}
Refine (t,i,true )
Vt € temptri : if not
Delete children ot

t.restrict then

The list temptri serves as a cache holding triangles from levels
J < i which are temporarily refined. A triangle is appended to the
listif it was refined to compute a value at a vertex. After processing
level i these triangles are unrefined unless theiestrict flag is

set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are

appended tagemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (t,1, dir) (see below) creates children of
t € T* and computes the values® (v) for the vertices and mid-
dle vertices of. The results are stored ins[i + 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

i (v.finest > i 4 1) add it in. Next compute™*(m) for mid-
dle vertices on level 4+ 1 aroundv (m € N(v,i + 1,1), where
N(v,1,1) is thel-ring neighborhood of vertex at levels). If m
has to be calculated, compuebd (m, ) and add in the detail if it
exists and record this fact in the flag-ced which will prevent unre-
finement later. At this point, al*** have been recomputed for the
vertices and middle vertices of Unrefinet and delete its children

if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (iferced = false ).
The list current functions as a cache holding triangles from level
i — 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
t it is decided that will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust.restrict is set for all of them. The functioRlat ()
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v, ) ensures that a complete ring of triangles
on leveli adjacent to the vertex exists. Because triangles on level
1 are restricted triangles all triangles on level 1 that containu
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to c@etRing (v,4). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates ircthreent cache
for fast access later.

GetRing (v,1)

Vte Tt withv € ¢ :
if t.leaf then
Refine (¢,7— 1,false ); temptri.append(t)
t.restrict := false ;t.temp := true
if t.temp then
current.append (t)




4.3 Local Synthesis

This could be implemented by running over thfeand each time

Even though the above algorithms are adaptive, they are still run ev-computing the above sum. Instead we use the dual implementation,

erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levelnd modifies the points' (v) for
v € V*' C VL This invalidates coarser level valugsandd’ for
certain subsetg™* C V", i < [, and finer level points’ for subsets
V** C V*fori > I. Finer level detail vectorg® for ¢ > [ remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysislescribed in Section 4.4, recomputing
the finer level is done blpcal synthesiglescribed in this section.

The set of vertice¥** which are affected depends on the support
of the subdivision scheme. If the support fits intorarring around
the computed vertex, then all modified vertices on level 1 can
be found recursively as

yrt = U N(v,i+1,m).
veEV*E

We assume that, = 2 (Loop-like schemes) om = 3 (Butterfly
type schemes). We define thebtriangulationI™" to be the subset
of triangles ofT™ with vertices inV/**.

LocalSynthesis is only slightty modified from
AdaptiveSynthesis iteration starts at level and iter-
ates only over the subme§H™.

4.4 Local Incremental Analysis

After an edit on level local incremental analysisvill recompute
s*(v) andd’(v) locally for coarser level vertices K 1) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticesn levell and callV*" the set of
vertices affected on level For a given vertex € V** we define

Vi
Ve, Ve,
‘2

Figure 11: Sets of even vertices affected through smoothing by ei-
ther an even or oddm vertex.

R*"'(v) € V'~ to be the set of vertices on level- 1 affected
by v through the smoothing operatéf. The setd/** can now be
defined recursively starting from level= [ to: = 0:

V*i71: U Rifl(v).

veEV*I

The setR*~!(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thek’~!(v) = {v} if v is even and
R7Y(m) = {ve1,ve2} if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, theR*~*(v) = {v} U {v; | 1 < k < K}

if vis even andR*~!(m) = {ve1,ve2,vs1,vs2} if v is odd. Be-
cause of restriction, these vertices always exist. &ar V? and

v’ € R (v) we letc(v, v') be the coefficient in the analysis sten-
cil. Thus

(Hs")(W) =

iterate over alb, accumulating{=) the right amount ta*(v") for
v’ € R"!(v). In case of a 2-ring Taubin smoother the coefficients
are given by

c(v,v) = (L —p) (1 —=X)+ur6

c(v,v) = pA/6K

cmve) = ((1— A+ (1= N+ pr/3)/K
ctmup) = pA3K,

where for eacte(v,v'), K is the outdegree of .

The algorithm first copies the old point§(v) for v € V** and
i < linto the storage location for the detail. If then propagates
the incremental changes of the modified points from lével the
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detalil
vectors that depend on the modified points.

We assume that before the edit, the old poistta) for v €
V*! were saved in the detail locations. The algorithm starts out by
building V*~! and saving the points’~*(v) for v € V*"!in
the detail locations. Then the changes resulting from the edit are
propagated to level — 1. Finally S s*~! is computed and used to
update the detail vectors on level

LocalAnalysis( 1)
Y EVV*Z' : W' € R(v) -
V*7'71 U= {U’}
v'dfi — 1] = v'.s[i — 1]

Yo e V* o' € R7(v) :
v'.sli — 1] += c(v,v) * (v.s[i] — v.d[i])
Yo e VTt
v.dfi] = U.F‘(’L')t * (v.s[i] —subd (v, — 1))
Ym € N(v,i,1) :
m.d[i] = m.F(3)" * (m.s[i] —subd (m,i — 1))

Note that the odd points are actually computed twice. For the Loop
scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

LocalAnalysis

Yo e VM udl] = v.s[l]
for ¢:=1 downto 0O
LocalAnalysis( 1)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering

The adaptive renderingalgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagdraw which is initialized tofalse ,
but set totrue as soon as the area corresponding te drawn.
This can happen either wheritself gets drawn, or when a set of
its descendents, which coveris drawn. The top level algorithm
loops through the triangles starting from the lexnel 1. A triangle



is always responsible for drawing its children, never itself, unless it are never copied, and a boundary is needed to delineate the actual

is a coarsest-level triangle.

AdaptiveRender

for ¢=n-—1 downto O
Vte T :if not t.leaf then
Render (¢)
YVt e T° : if not t.draw then
displaylist append (t)

T-vertex

Figure 12: Adaptive rendering: On the left 6 triangles from leyel
one has a covered child from levek- 1, and one has a T-vertex.

On the right the result from applyingender to all six.

TheRender (t) routine decides whether the childrentdfave to be
drawn or not (cf. Fig.12). It uses a functiedist (m) which mea-
sures the distance between the point corresponding to the edge’s
middle vertexm, and the edge itself. In the when case any of the
children oft are already drawn or any of its middle vertices are far
enough from the plane of the triangle, the routine will draw the rest
of the children and set the draw flag for all their vertices antt

also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routioat (¢) will cut

t into 2, 3, or 4, triangles depending on how many middle vertices

are drawn.

Render (t)

if (3¢ e t.child|cdraw = true
or Im € t.mid _vertex |edist (m) > ep) then
Ve € t.child :
if not c.draw then
displaylistappend (c)
Yv € ¢ : v.draw := true
t.draw = true
else if 3JIm € t.mid_vertex | m.draw = true
V¢’ € cut (t) : displaylistappend(t’)
t.draw = true

4.6 Data Structures and Code

submesh.

The algorithms we have described above make heavy use of
container classes. Efficient support for sets is essential for a fast
implementation and we have used the C++ Standard Template Li-
brary. The mesh editor was implemented using Openlnventor and
OpenGL and currently runs on both SGI and Intel PentiumPro
workstations.
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Figure 13: On the left are two meshes which are uniformly sub-
divided and consist of 11k (upper) and 9k (lower) triangles. On
the right another pair of meshes mesh with approximately the same
numbers of triangles. Upper and lower pairs of meshes are gen-
erated from the same original data but the right meshes were op-
timized through suitable choice ef. See the color plates for a
comparison between the two under shading.

5 Results

In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.

Figure 13 shows two triangle mesh approximations of the Ar-
madillo head and leg. Approximately the same number of triangles

The main data structure in our implementation is a forest of trian- are used for both adaptive and uniform meshes. The meshes on the
gular quadtrees. Neighborhood relations within a single quadtree left were rendered uniformly, the meshes on the right were rendered
can be resolved in the standard way by ascending the tree to theadaptively. (See also color plate 15.)

least common parent when attempting to find the neighbor across a Locally changing threshold parameters can be used to resolve an
given edge. Neighbor relations between adjacent trees are resolvedirea of interest particularly well, while leaving the rest of the mesh
explicitly at the level of a collection of roots, i.e., triangles of a at a coarse level. An example of this “lens” effect is demonstrated
coarsest level graph. This structure also maintains an explicit rep- in Figure 14 around the right eye of the Mannequin head. (See also
resentation of the boundary (if any). Submeshes rooted at any levelcolor plate 16.)

can be created on the fly by assembling a new graph with some set We have measured the performance of our code on two plat-
of triangles as roots of their child quadtrees. It is here that the ex- forms: an Indigo R10000@175MHz with Solid Impact graphics,
plicit representation of the boundary comes in, since the actual treesand a PentiumPro@200MHz with an Intergraph Intense 3D board.



We used the Armadillo head as a test case. It has approximaterACkn0W|edgmentS
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjustedr so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,00
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raise(ﬁ
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is renderedReferences
in immediate mode, while the rest of the surface continues to be . .
rendered as a display list. Grabbing a submesh of 20-30 faces (a (1 Egrigaz.t \Ijh%;gg ég;;é(é’\é Era:'s Lcafrfrﬂﬁﬂ Psﬁa(n;é%gf a
typical case) at level 0 added 250 mS of time per redraw, at level 1 532-540 ' ' '
it added 110 mS and at level 2 it added 30 mS in case of the SGI. ' .

CAaTMuULL, E., AND CLARK, J. Recursively Generated B-

> aflt & (2]
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Combined Subdivision Schemes - an introduction

Adi Levin
April 7, 2000

Abstract

Combined subdivision schemes are a class of subdivision schemes that allow
the designer to prescribe arbitrary boundary conditions. A combined subdivision
scheme operates like an ordinary subdivision scheme in the interior of the surface,
and applies special rules near the boundaries. The boundary rules at each iteration
explicitly involve the given boundary conditions. They are designed such that the
limit surfaces will satisfy the boundary conditions, and will have specific smooth-
ness and approximation properties.

This article presents a short introduction to combined subdivision schemes and
gives references to the author’s works on the subject.

1 Background

The surface of a mechanical part is typically a piecewise smooth surface. It is also
useful to think of it as the union of smooth surfaces that share boundaries. Those
boundaries are key features of the object. In many applications, the accuracy required
at the surface boundaries is more than the accuracy needed at the interior of the surface.
In particular it is crucial that two neighboring surfaces do not have gaps between them
along their common boundary. Gaps that appears in the mathematical model cause
algorithmic difficulties in processing these surfaces. However, commonly used spline
models cannot avoid these gaps.

A boundary curve between two surfaces represents their intersection. Even for
simple surfaces such as bicubic polynomial patches the intersection curve is known to
be a polynomial of very high degree. A compromise is then made by approximating
the actual intersection curve within specified error tolerance, and thus a new problem
appears: the approximate curve cannot lie on both surfaces. Therefore one calculates
two approximations for the same curve, each one lying on one of the surfaces, hence
the new surface boundaries have a gap between them.

The same thing happens with other surface models that represent a surface by a
discrete set of control points, including subdivision schemes. Combined subdivision
schemes offer an alternative. In the new setting, the designer can prescribe the bound-
ary curves of the surface exactly. Therefore, in order to force two surfaces to share a
common boundary without gaps, we only need to calculate the boundary curve, and
require each of the two surfaces to interpolate that curve.



Figure 1: A smooth blending between six cylinders.

While boundary curves are crucial for the continuity of the model, other bound-
ary conditions are also of interest. It is sometimes desirable to have two neighboring
surfaces connect smoothly along their shared boundary. Figure 1 shows six cylinders
blended smoothly by a surface. Combined subdivision schemes offer that capability as
well.

2 The principle of combined subdivision

Combined subdivision schemes provide a general framework for designing subdivision
surfaces that satisfy prescribed boundary conditions. In the standard subdivision ap-
proach, the surface is defined only by its control points. Given boundary conditions,
one tries to find a configuration of control points for which the surface satisfies the
boundary conditions. In combined subdivision schemes the boundary conditions play
arole which is equivalent to that of the control points. Every iteration of subdivision is
affected by the boundary conditions.

Hence, standard subdivision can be described as the linear process

Pl =6p" n=0,1,...,

where P™ stands for control points after iterations of subdivision, anl stands for
the subdivision operator. In these notations, a combined subdivision scheme will be
described by

Pl = §P" + (Boundary contribution), n=0,1,....

The namesombined subdivision schenmsmes from the fact that every iteration of the
scheme combines discrete data, i.e. the control points, with continuouiarfsfinite

data, i.e. the boundary conditions. Using this approach, a simple subdivision algorithm
can yield limit surfaces that satisfy the prescribed boundary conditions.



3 Related work

In this section we discuss previous known works in the subject of subdivision surfaces
with boundaries. All of these works employ the standard notion of subdivision, i.e. a
process where control points are recursively refined. Thus, the subdivision surface is
described by a given set of control points, and a set of subdivision rules. The subdivi-
sion rules that are applied near the surface boundary may differ from those used in the
interior of the surface.

In [8], Loop’s subdivision scheme is extended to create piecewise surfaces, by in-
troducing special subdivision rules that apply near crease edges and other non-smooth
features. The crease rules introduced in [8] can also be used as boundary rules. How-
ever, these boundary rules do not satisfy the requirement that the boundary curve de-
pends only on the control points on the boundary of the control net. Bierman et al.
[9] improve these boundary rules such that the boundary curve depends only on the
boundary control polygon, and introduce similar boundary rules for the Catmull-Clark
scheme. Their subdivision rules also enable control over the tangent planes of the
surface at the boundaries.

Kobbelt [1] introduced an interpolatory subdivision scheme for quadrilateral con-
trol nets which generalizes the tensor-product 4-point scheme and has special subdi-
vision rules near the boundaries. Nasri [7] considered the interpolation of quadratic
B-spline curves by limit surfaces of the Doo-Sabin scheme. The conditions he derived
can be used to determine the boundary points of a Doo-Sabin control net such that the
limit surface interpolates a prescribed B-spline curve at the boundary.

In all of these works, specific subdivision schemes are considered, and the boundary
curves are restricted to spline curves or to subdivision curves. The notion of combined
subdivision enables the designer to prescribe arbitrary boundary curves. Moreover, we
have a generalized framework for constructing combined subdivision schemes, based
on any known subdivision scheme, and for a large class of boundary conditions.

In addition, all of these previous works only established the smoothness of the limit
surfaces resulting from their proposed subdivision schemes. In the theory of combined
subdivision schemes, both the smoothness and the approximation properties of the new
schemes were studied, as it was recognized that for CAGD applications the quality of
approximation is a major concern.

4 \Works on Combined Subdivision Schemes

In this section, the current works on combined subdivision schemes are listed. All of
the manuscripts are availabletdtp://www.math.tau.ac.il/adilev.

The definition and the theoretical analysis of combined subdivision schemes are
developed in [5]. This work also contains several detailed examples of constructions of
new subdivision schemes with prescribed smoothness and approximation properties,
and of their applications. The schemes in [5] include extensions of Loop, Catmull-
Clark, Doo-Sabin and the Butterfly scheme.

An important aspect of the smoothness analysis of combined subdivision schemes
is the analysis of a subdivision scheme acrossxraordinary ling namely, an area of



the surface around a given edge or curve where special subdivision rules are applied.
Analysis tools for such cases are given in [2]. This is also of interest for constructing
boundary rules for ordinary subdivision schemes, since boundaries can typically be
viewed as extraordinary lines.

In [3], several simple combined subdivision schemes are presented, that can handle
prescribed boundary curves, and prescribed cross-boundary derivatives, as extensions
of Loop’s scheme and of the Catmull-Clark scheme.

In [4] a combined subdivision scheme for the interpolation of nets of curves is pre-
sented. This scheme is based on a variant of the Catmull-Clark scheme. The generated
surfaces can interpolate nets of curves of arbitrary topology, as long as no more than
two curves intersect at one point.

In [6] a specially designed combined subdivision scheme is used for filing
sided holes, while maintaining' contact with the neighboring surfaces. This offers
an elegant alternative to current methodsX6sided patches.
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A Combined Subdivision Scheme For Filling Polygonal Holes

Adi Levin
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Abstract

A new algorithm is presented for calculating-sided
surface patches that satisfy arbitray boundary con-
ditions. The algorithm is based on a new subdivision
scheme that uses Catmull-Clark refinement rules in the
surface interior, and specially designed boundary rules
that involve the given boundary conditions. The new
scheme falls into the category of Combined Subdivision
Schemes, that enable the designer to prescribe arbitrary
boundary conditions. The generated subdivision surface
has continuous curvature except at one extraordinary mid-
dle point. Around the middle point the surface($ con-
tinuous, and the curvature is bounded.

Figure 1: A 5 sided surface patch

1 Background

cient algorithms for the design, representation and pro-

The problem of constructingy-sided surface patches occessing of smooth surfaces of arbitrary topological type.
curs frequently in computer-aided geometric design. Th&eir simplicity and their multiresolution structure make
N-sided patch is required to connect smoothly to givéhem attractive for applications in 3D surface modeling,
surfaces surrounding a polygonal hole, as shown in Fajld in computer graphics [7, 9, 11, 13, 19, 27, 28].
1. The subdivision scheme presented in this paper falls

Referring to [10, 25, 26]V-sided patches can be geninto the category otombined subdivision schemfish,
erated basically in two ways. Either the polygonal dd5, 17, 18], where the underlying surface is represented
main, which is to be mapped into 3D, is subdivided inot only by a control net, but also by the given boundary
the parametric plane, or one uniform equation is usedaenditions. The scheme repeatedly applies a subdivision
represent the entire patch. In the former case, triangut@erator to the control net, which becomes more and more
or rectangular elements are put together [2, 6, 12, 20, 28nse. In the limit, the vertices of the control net converge
or recursive subdivision methods are applied [5, 8, 24]. 16 a smooth surface. Samples of the boundary conditions
the latter case, either the known control-point based megiarticipate in every iteration of the subdivision, and as a
ods are generalized or a weighted sum of 3D interpolan@sult the limit surface satisfies the given conditions, re-
gives the surface equation [1, 3, 4, 22]. gardless of their representation. Thus, our scheme per-

The method presented in this paper is a recursive si@yms so-called transfinite interpolation.
division scheme specially designed to consider arbitraryThe motivation behind the specific subdivision rules,
boundary conditions. Subdivision schemes provide effind the smoothness analysis of the scheme are presented



in [16]. In the following sections, we describe Catmull-
Clark’s scheme, and we present the details of our scheme.

2 Catmull-Clark Subdivision

AnetX = (V, E) consists of a set of verticd$ and the
topological information of the nekE, in terms of edges
and faces. A netis closed when each edge is shared by
exactly two faces.

Camull-Clark’s subdivision scheme is defined over
closed nets of arbitrary topology, as an extension of
the tensor product bi-cubic B-spline subdivision scheme
[5, 8]. Variants of the original scheme were analyzed by e topologyE’ of the new net is calculated by the
Ball and Storry [24]. Our algorithm employs a variang|iowing rule: For each old facg and for each vertex
of Catmull-Clark’s scheme due to Sabin [21], which gery #, make a new quadrilateral face whose edges;joj)

erates limit surfaces that aré”-continuous everywhereangy(v) to the edge vertices of the edgesfosharingv
except at a finite number of irregular points. In the neigsee Fig. 2).

Figure 2: Catmull-Clark's scheme

borhood of those points the surface curvature is boundedy, present the procedure for calculating the weights
The irregular points come from vertices of the origing}antioned above, as formulated by Sabin in [21]: Let

control net that have valency other than 4, and from faces <. o denote a vertex valency. Lét := cos(r/m).

of thle original control net Fhat are not quadrilateral. Let = be the unique real root of

Given a netY, the verticesV’ of the new nett! =
(V', E') are calculated by applying the following rules on 3+ (4k* — 3)z — 2k = 0,
¥ (see Fig. 2):

satisfyingz > 1. Then
1. For each old facg, make a new face-vertex f) as

the weighted average of the old verticesfofwith Wi = 2% +2kz — 3,  opn =1,
weightsW,,, that depend on the valeney of each
vertex. _ kx4 2k -1 B = —

m = w2(kxr+1) 7" m-

2. For each old edge, make a new edge-vertexe)
as the weighted average of t'he old yerUces ahd take: the formulas for the parameterss and~ that ap-
the new face vertices associated with the two faceé'~:ar ing4 there, ared = 1, v 1= —
originally sharinge. The weightsiV,,, (which are P ' s
the same as the weights used in rule 1) depend on

3. Foreach old vertex, make a new vertex-vertexv) The input to our scheme consists df smooth curves

at the point given by the following linear combina- . . : . 3
tion, whose coefficients.,,, 3., depend on the given in a parametric representatign: [0,2] — R?® over
vale:ncym of o- e e Jm the parameter intervdD, 2], and corresponding cross-

boundary derivative functiond; : [0,2] — R3 (see
am- (the centroid of the new edge vertices of theig. 3). We say that the boundary conditions &r&
edges meeting at v) #,,- (the centroid of the new compatible at thej-th corner if

face vertices of the faces sharing those edges) +

Vm + V. ¢;j(2) = ¢j4+1(0).

Remark The original paper by Sabin [21] contains a mis-



4 The Algorithm

In this section we describe our algorithm for the design
of an N-sided patch satisfying the boundary conditions
described irg3. The key ingredients of the algorithm are

two formulas for calculating the boundary vertices of the
net. These formulas are given§a.3 ands4.4.

4.1 Constructing an initial control net

. i The algorithm starts by constructing an initial control
Figure 3: The input data net whose faces are all quadrilateral wi2tv bound-
ary vertices and one middle vertex, as shown in Fig. 4.
The boundary vertices are placed at the parameter values
0,1,2 on the given curves. The middle vertex can be ar-
bitrarily chosen by the designer, and controls the shape of
the resulting surface.

4.2 A single iteration of subdivision

We denote by: the iteration number, where = 0 corre-
sponds to the first iteration. In theth iteration we per-
form three steps: First, we relocate the boundary vertices
according to the rules given belowid.3 -§4.4. Then, we
Figure 4: The initial control net (right) apply Sabin’s variant of Catmull-Clark’s scheme to cal-
culate the new net topology and the position of the new
internal vertices. For the purpose of choosing appropriate
weights in the averaging process, we consider the bound-
ary vertices as if they all have valency 4. This makes up
for the fact that the net is not closed. In the third and fi-
nal step, we sample the boundary vertices from the given
d;(0) = —cg_l (2), curves at uniformly spaced parameter values with interval

¢;01(0) length2—(+1),
/ )

We say that the boundary conditions @Fé-compatible
if

&

—~
[\

~—
Il

We say that the boundary conditions &f&compatibleif 4.3 A smooth boundary rule
the curves:; have Hilder continuous second derivatives,
the functionsi; have Hlder continuous derivatives, an
the following twist compatibility condition is satisfied:

et v denote a boundary vertex corresponding to the pa-
rameter0 < u < 2 on the curvec;. Let w denote the
unigue internal vertex which shares an edge witfsee
Fig. 5). In the first step of tha-th iteration we calculate

d;(2) = —dj,,(0). (1) the position of they by the formula
1 -n -n
The requirement of blider continuity is used in [16] for v = 2c;j(u) — 1 (cj(u+27") +¢j(u—2"")) -
the proof of C2-continuiuty in case the boundary condi- 1
tions areC2-compatible. -2 (dj (u+2"") +dj (u—27")) —



— % g
-n
u-2 u u+2—n

Figure 5: The stencil for the smooth boundary rule

1 2
—w+27"=d;(u).
2 3 Figure 6: The stencils for the corner rule

4.4 A corner rule

. ._The limit surface interpolates the given curves, for
Letv denote a boundary vertex corresponding to the pogb-compatible boundary conditions. F6t-compatible

¢j-1(2) = ¢;(0). Letw be the unique internal Vertexboundary conditions, the tangent plane of the limit sur-
shar!ng a'face withy (see Fig. 6). 'I'n the first step of thq‘ace atthe point; (u) is spanned by the vectom‘;(u) and
n-~th iteration we calculate the positionoby the formula d; (), thus the surface satisfi€& -boundary conditions.

5 . . Furthermore, due to the locality of this scheme, the limit
vo= 5(:]»(0) — (@) +e¢a(2-277) + surface isC? near the boundaries except at points where
1 e 1 e the C2-compatibility condition is not satisfied.
gcj@ )+ 561—1(2 —27) + The surfaces in Fig. 7 and Fig. 8 demonstrate that the
_n29 1 limit surface behaves moderately even in the presence of
2 48 (;(0) +d;-1(2)) + Vil wavy boundary conditions. The limit surfaces aré-
a1 n n continuous near the boundary except at corners where the
2 12 (427" +dj-1(2-27")) = twist compatibility condition (1) is not satisfied.
1
2—“4—8 (d;(2"™) +dj—1(2—2"77)).
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Interpolating Nets Of Curves By Smooth Subdivision Surfaces
Adi Levin*

Tel Aviv University

Abstract

A subdivision algorithm is presented for the computation and repre-
sentation of a smooth surface of arbitrary topological type interpo-
lating a given net of smooth curves. The algorithm belongs to a new
class of subdivision schemes calls@mbined subdivision schemes
These schemes can exactly interpolate a net of curves given in any
parametric representation. The surfaces generated by our algorithm
areG? except at a finite number of points, where the surfacg'is

and has bounded curvature. The algorithm is simple and easy to
implement, and is based on a variant of the famous Catmull-Clark
subdivision scheme.

1 INTRODUCTION

Subdivision schemes provide efficient algorithms for the design,

representation and processing of smooth surfaces of arbitrary topo-

logical type. Their simplicity and their multiresolution structure Figure 1: Interpolation of a net of curves
make them attractive for applications in 3D surface modeling, and

in computer graphics [2, 4, 5, 6, 11, 18].

A common task in surface modeling is that of interpolating a the category oombined subdivision schen{@s8, 10], where the
given net of smooth curves by a smooth surface. A typical solu- ynderlying surface is represented not only by a control net, but also
tion, using e_|ther subd|V|S|o_n surfaces or NUR_BS_sun‘aces (or oth_er by given parametric curves (or in general, given interpolation con-
kinds of spline surfaces), is based on establishing the connectiongitions or boundary conditions). The scheme repeatedly applies a
between parts of the control net which defines the surface, and cer-sypdivision operator to the control net, which becomes more and
tain curves on the surface. For example, the boundary curves of more dense. In the limit, the vertices of the control net converge to
NURBS surfaces are NURBS curves whose control polygon is the 3 smooth surface. Point-wise evaluations of the given curves par-
boundary polygon of the NURBS surface control net. Hence, curve tjcipate in every iteration of the subdivision, and the limit surface
interpolation conditions are translated into conditions on the control interpolates the given curves, regardless of their representation.
net. Fairing techniques [5, 15, 17] can be used to calculate a control Figure 1 illustrates a surface generated by our algorithm. The
net satisfying those conditions. Using subdivision surfaces, this can gyrface is defined by an initial control net that consists of 11 ver-
be carried out, in general, for given nets of arbitrary topology (see tices, and by a net of intersecting curves, shown in green. The edges
[12, 13]). ) ) of the control net are shown as white lines.

However, the curves that can be interpolated using that approach  The combined subdivision scheme presented in this paper is
are restricted by the representation chosen for the surface. NURBSp35ed on the famous Catmull-Clark subdivision scheme. Our al-
surfaces are suitable for interpolating NURBS curves; Doo-Sabin gorithm applies Catmull-Clark’s scheme almost everywhere on the
surfaces can interpolate quadratic B-spline curves [12, 13]; Other control net. The given curves affect the control net only locally, at
kinds of subdivision surfaces can be shown to interpolate specific parts of the control net that are near the given curves.
kinds of subdivision curves. Furthermore, interpolation of curves = The motivation behind the specific subdivision rules, and the
that have small features requires a large control net, making the smoothness analysis of the scheme are presented in [9]. In the

fairing process slower and more complicated. _ ~ following sections, we describe Catmull-Clark’s scheme, and we
This paper presents a new subdivision scheme specially designechresent the details of our scheme.

for the task of interpolating nets of curves. This scheme falls into

*adilev@math.tau.ac.il, http://www.math.tau.adaitlilev 2 CATMULL-CLARK’'S SCHEME

Camull Clark’s subdivision scheme is defined over closed nets of
arbitrary topology, as an extension of the tensor product bi-cubic
B-spline subdivision scheme (see [1, 3]). Variants of the original
scheme were analyzed by Ball and Storry [16]. Our algorithm em-
ploys a variant of Catmull-Clark’s scheme due to Sabin [14], which
generates limit surfaces that af# everywhere except at a finite
number of irregular points. In the neighborhood of those points the
surface curvature is bounded. The irregular points come from ver-
tices of the original control net that have valency other than 4, and
from faces of the original control net that are not quadrilateral.



AnetN = (V, E) consists of a set of verticd§ and the topo-
logical information of the nef’, in terms of edges and faces. A net
is closed when each edge is shared by exactly two faces.

Figure 2: Catmull-Clark’s scheme.

The vertices/’ of the new netV’ = (V' E’) are calculated by
applying the following rules oV (see figure 2):

1. For each old facef, make a new face-vertex(f) as the
weighted average of the old vertices ff with weightsW,,
that depend on the valeneyof each vertex.

. For each old edge, make a new edge-vertexe) as the
weighted average of the old verticeseadind the new face ver-
tices associated with the two faces originally shaingrhe
weights,, (which are the same as the weights used in rule
1) depend on the valeneyof each vertex.

. For each old vertex, make a new vertex-vertex(v) at the
point given by the following linear combination, whose coef-
ficientsan,, Bn, v depend on the valenay of v:

an- (the centroid of the new edge vertices of the edges meet-
ing at v) + 3, (the centroid of the new face vertices of the
faces sharing those edgesy+- v.

The topologyE’ of the new net is calculated by the following
rule:

For each old facg and for each vertex of f, make a new
quadrilateral face whose edges joify) andv(v) to the edge
vertices of the edges df sharingv (see figure 2).

The formulas for the weights,,, 8., v» and W,, are given in
the appendix.

3 THE CONTROL NET

Our subdivision algorithm is defined both on closed nets and on

open nets. In the case of open nets, we make a distinction be-

tweenboundary verticeandinternal verticegand betweetound-
ary edgesandinternal edgeys The control net that is given as input

to our scheme consists of vertices, edges, faces and given smooth

curves. We assume that these @feparametric curves. An edge
which is associated with a segment of a curve, is callecedge
Both of its vertices are called-vertices All the other edges and
vertices arerdinary verticesandordinary edges

/}\

An internal intersection vertex A regular internal c-vertex

AR

An outward corner vertex An Inward corner vertex

S

A regular boudnary A boundary intersection
c-vertex vertex

Figure 3: The different kinds of c-vertices. C-edges are marked by
bold curved lines. Usual edges are shown as thin lines.

of intersection vertices, we require that the two curves intersect at
those parameter values.

Every c-edgecontains a pointer to a curve and to a segment
on that curve designated by a parameter intew@lu1]. The ver-
tices of that edge are associated with the poitis,) and c(u1)
respectively. We require that in the original control net, the param-
eter intervals be all of constant length for all the c-edges associated
with a single curve:, namely|u; — uo| = const. In order to fulfill
this requirement, the c-vertices along a cuevean be chosen to be
evenly spaced with respect to the parameterization of the ayrve
or the curvec can be reparameterized appropriately such that the
c-vertices ofc are evenly spaced with respect to the new parameter-
ization.

The restrictions on the control net are that every boundary edge
is a c-edge (i.e. the given net of curves contains all the boundary
curves of the surface), and that we allow only the following types
of c-verticesto exist in the net (see figure 3):

Aregular internal c-vertex A c-vertex with four edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and two ordinary edges from opposite sides of the
curve.

A regular boundary c-vertex A c-vertex with 3 edges emanating
from it: Two boundary edges that are associated with the same
curve, and one other ordinary internal edge.

In case two c-edges that share a c-vertex are associated with two
different curves, the c-vertex is associated with two curves, and we An internal intersection vertex A c-vertex with 4 edges emanat-

call it anintersection vertexEveryc-vertexis thus associated with
a parameter value on a curve, whi¢ersection verticeare asso-

ciated with two curves and two different parameter values. In case

ing from it: Two c-edges that are associated with the same
curve, and two other c-edges that are associated with a second
curve, from opposite sides of the first curve.



A boundary intersection vertex A c-vertex with 3 edges emanat- We say thatd: (v) is the cross-curve second derivative associated
ing from it: Two c-edges that are associated with the same with v with respect to the curve,. Similarly, d2(v) is the cross-
curve, and another c-edge associated with a different curve. curve second derivative associated wittvith respect to the curve

An inward corner vertex A c-vertex with 2 c-edges emanating
from it, each associated with a different curve.

4 THE COMBINED SCHEME

In the preprocessing stage of our algorithm, we calcybéte for
every c-vertex of the original control net, according to the following
In particular, we do not handle more than two curves intersecting rules: In case is an intersection vertex which is associated with the
at one point. pointc(u), its location is given by
In our algorithm, there is an essential difference between c-
vertices and ordinary vertices: While the locatje(v) of ordinary

An outward corner vertex A c-vertex with 4 edges emanating
from it: Two consequent c-edges that are associated with two
different curves and two ordinary edges.

di(v) + dafv).

vertices of the original control net is determined by the designer, p(v) = c(u) — 6 @

the location of c-vertices is calculated in a preprocessing stage of

the algorithm (the exact procedure is describegiin In casev is not an intersection vertex, its location is given by
Every c-vertexv which is associated with a parameter vajuen

the curvec, has associated with it a three-dimensional ved{o)), p(v) = c(u) — AZc(v) + d(v) 3)

which determines the second partial derivative of the limit surface
at the pointe(u) in the cross-curve direction (The differentiation is o . )
made with respect to a local parameterization that is induced by the From (2) and (3) it is clear why the c-vertices do not necessarily

6

subdivision process. The cross-curve direction at a c-vertsxhe lie on the given curves. Notice, for example, in figure 8 how the
limit direction of the ordinary edge emanating foy. We call the boun_dary vertices of the original control net are pushed away’ from
value d(v) the cross-curve second derivatissociated with the  the given boundary curve, due to the tefxiic(v) in (3).

vertexw. Each iteration of the subdivision algorithm consists of the fol-

Every intersection vertex has associated with it two three- 10wing steps: First, Catmull-Clark's scheme as describegPifs
dimensional vectors, (v), d2(v) that correspond to the two curves ~ USed to calculate the new ordinary vertices. Next, the new c-vertices
c1,co that are associated with At the intersection between two ~ @re calculated (this includes all the boundary vertices). Finally, we
curves, the surface second derivatives in the two curve directions Perform local ‘corrections’ on new ordinary vertices that are neigh-
are determined by the curves, therefore the user does not have conbors of c-vertices.
trol over the cross-curve second derivatives there. Their initializa-
tion procedure is described below. _ 4.1 Calculation Of Ordinary Vertices

For c-vertices that are not intersection vertices, the vectars
in the initial control net are determined by the designer and they Step 1 of the combined scheme creates the new control net topol-
affect the shape of the limit surface. Several ways of initializing the ogy, and calculates all the new ordinary vertices, by applying
valuesd(v) are discussed ib. Catmull-Clark’s scheme. Since Catmull-Clark’s scheme was de-

signed for closed nets, we adapt it a little bit near the surface bound-

aries, by considering the boundary vertices to have valency 4 when

Vv calculating new ordinary vertices that are affected by the boundary
\" vertices.

o) M oew) ey W)

4.2 Calculation Of C-Vertices

In step 2, the data associated with the new c-vertices is calculated,
by the following procedure:

Let e denote a c-edge on the old control net, which corresponds
to the parameter intervadio, u1] of the curvec. Letwvo, v1 denote

Throughout the scheme we apply second difference operators tothe vertices o. We associate the vertexe) with ¢ (%) and
the given curves. Let denote a c-vertex associated with a curve Wwe calculate the new cross-curve second derivative ey by the

Figure 4: For each c-vertexthat is associated with a curvewve
define the second differengs®c(v).

c. We define thesecond difference efat v, denoted byA*c(v) as following simple rule:
follows (see figure 4): I is associated with the end of the curve
¢, then there is a single c-edge emanating frothat is associated d(v(e)) = d(vo) + d(v1) (4)
with the parameter intervéd.; , u2] onc. In this case 8 '
+ U2 In casevp or v; are intersection vertices (and therefore, contain two
A2c(v) = de(ur) — 8 (“1 ) de(u). o Or vy ect ‘ _
c(v) o(w) ¢ 2 +de(uz) cross-curve second derivative vectdisandd:), the one taken in
In case there are two c-edges emanating frotiat are associated ~ (4) should be the cross-curve second derivative with respect to the
with the parameter interva(s, u], [u, uz] onc, we define curvec. ,
Letv denote a c-vertex on the old control net. We assoeiig
APc(v) = clur) — 2¢(u) + c(us). with the same curve and the same parameter value on that curve,

asv had. In case is an intersection vertex, we sét(v(v)) and
da(v(v)) by (1). Otherwise, the new cross-curve second derivative
atv(v) is inherited fromv by the following rule:

The valuesi; (v), d2(v) at the intersection vertexwhich is as-
sociated with two curves; andcs, are initialized by

di(v) = A’ci(v)
da(v) = Aca(v). 1 d(v(v)) = =~ (5)
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Figure 5: Local corrections near a regular internal c-vertex

Figure 6: Local corrections near an outward corner.

Step 2 is completed by calculating the location of every c-vertex
using (2) and (3).

As the subdivision iterations proceed, the valui®) and
A*C(v) decay at a rate of ¥, wherek is the level of subdivision.

locations forva, . . . , v by the following rules:

t = iam(vz),
Bls) = 3p(u) + 2 (2(0) — p(or) + A1 (v),
Plos) = 3p(s) + 2 (26(0) — plen) + Aca(v))
Ploa) = gp(0a) + 3 (o) + plwr) = p(0) — 1)
Bos) = 3p(vs) + 3 (3(us) + pler) — plo) — )
Blor) = 5p(oa)+ 2 (B(es) +B(es) ~p(0) +0) (1)

There are cases when a single vertex has more than one cor-
rected location, for example an ordinary vertex which is a neighbor
of several c-vertices. In these cases we calculate all the corrected
locations for such a vertex, using (6) or (7) and define the new lo-
cation of that vertex to be the arithmetic mean of all the corrected
locations. Situations like these occur frequently at the first level of
subdivision. The only possibility for a vertex to have more than one
corrected location after the first subdivision iteration, is near inter-
section vertices; The vertex always has two corrected locations, and
its new location is taken to be their arithmetic mean.

5 DISCUSSION

The cross-curve second derivativi®) of the original control net
as determined by the designer, play an important role in determin-
ing the shape of the limit surface. As part of constructing the initial
control net, a 3D vectad(v) should be initialized by the designer,
for everyregular internal c-vertexand for everyregular boundary
c-vertex

In case the initial control net contains only intersection vertices

Therefore the c-vertices converge to points on the curves, which (such as the control net in figure 1), (1) determines all the cross-

provides the interpolation property (see figure 8).

4.3 Local Corrections Near C-Vertices

curve second derivatives. Otherwise they can be initialized by any
kind of heuristic method.

We suggest the following heuristic approach to initialide)
in casev is a regular internal c-vertex: Let be associated with
the curvec at the parameter valug, and letv:, vo denote the two

Step 3 performs local modifications to the resulting control net near ordinary vertices that are neighbors ofsee figure 5). It seems
regular internal c-vertices, and near outward corners. Ordinary ver- reasonable to calculatév) such that

tices that are neighbors of regular internal c-vertices are recalcu-

lated by the following rule: Let denote a regular internal c-vertex,
and letv; andwv, denote its two neighboring ordinary vertices (see
figure 5). Letp(v1),p(v2) denote the locations af, and v, that
resulted from step 1 of the algorithm. Letv) denote the location

of v that resulted from step 2 of the algorithm. We calculate the
correctedlocationsp(vi ), p(v2) by

ﬁ@ﬂ=mw+%g+ﬂﬂigﬂgL
Plo2) = plo) + 1) P2 Zplon) ©

A different correction rule is applied near outward corner ver-
tices. Letv denote an outward corner vertex, anddet. .., vy
denote its neighboring vertices (see figure 6). The vesterrre-
sponds to the curve, at the parameter value;, and to the curve
c2 at the parameter value. In particular,ci (u1) = c2(uz2).

Let p(v),p(v1), ..., p(v7) denote the locations af, vy, . .., v7
that resulted from steps 1 and 2 of the algorithm. bdbe the
vectora = %(1, -1,-1,2,—1,—1,1). We calculate the corrected

p(v1) + p(v2) = 2p(v) = d(v),

because we know that this relation holds in the limit. Sip@e) it-
self depends od(v) according to (3), we get the following formula
for d(v):

3
d(v) = -
(v) =3
In casew is a regular boundary c-vertex, which lies between
two boundary intersection vertices, v2 (see figure 7), one should
probably consider the second derivativesgatve when determin-
ing d(v). The following heuristic rule can be used:

(p(0n) + p(e2) = 3e(w) + SA%(0).  (8)

AZci(v) + A%ca(v)
2 )

d(v) = 9)
wherev:, v, are associated withy (u1) andez (u2) respectively.

The are many cases when the choitfe) = 0 generates the
nicest shapes whenis a regular boundary c-vertex. Recall that the
natural interpolating cubic spline has zero second derivative at its
ends.



(1]

(2]

(3]
Figure 7: A regular boundary c-vertex between two boundary inter-
section vertices

(4]

Other ways of determining(v) may employ variational princi-
ples. One can choos&v) such as to minimize a certain fairness
measure of the entire surface. [5]

6 CONCLUSIONS

(6]
With combined subdivision schemigit extend the notion of the
known subdivision schemes, it is simple to generate surfaces of ar-
bitrary topological type that interpolate nets of curves given in any
parametric representation. The scheme presented in this paper is
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Appendix
We present the procedure for calculating the weights mentioned in
§2, as formulated by Sabin in [14].
Letn > 2 denote a vertex valency. Lét:= cos(n/n). Letz
be the unique real root of
x® + (4k* = 3)x — 2k =0,

satisfyingz > 1. Then

Wn = a°+2kz—3, (10)
a, = 1,
kx4 2% — 1
T TRk +1)
Bn = —7n
L~ ] W | Tn |
1.23606797749979..] 0.06524758424985..
1 0.25

0.71850240323974. .
0.52233339335931..
0.39184256502794. .

0.40198344690335. .
0.52342327689253. .
0.61703187134796. .

~N oo W3S

Table 1: The weights used in Sabin’s variant of Catmull-Clark’s
subdivision scheme

The original paper by Sabin [14] contains a mistake: the for-
mulas for the parameters, 3 and~ that appear irg4 there, are
B:=1, v:=—a.

The weightd¥,, and~,, forn = 3,...,7 are given in table 1.

Figure 8: Three iterations of the algorithm. We have chosen
d(v) = 0 for every c-vertexv, which results in parabolic points
on the surface boundary.

N 4

Figure 9: The limit surface of the iterations shown in figure 8

Figure 10: A 5-sided surface generated from a simple control net,
with zerod(v) for all c-verticesv. Our algorithm easily fills arbi-
trary N-sided patches.



%
Figure 11: A surface with an outward corner. We used (8) to calcu- Figure 14: A closed surface. The cross curve second derivatives for
lated(vs) .and setl(vy) = 0. ' regular internal c-vertices were calculated using (9).

Figure 15: A Torus-like surface, from a net of circles.
Figure 12: A surface with non smooth boundary curves, and zero
cross-curve second derivatives

a® O

Figure 16: Introducing small perturbations to the given curves re-
sults in small and local perturbations of the limit surface. Notice

that the original control net does not contain the information of

the small perturbations. These come directly from the data of the
curves.

Figure 13: A surface with non smooth boundary curves, and zero
cross-curve second derivatives



Figure 17: Small perturbations to the given curves result in small
and local deformation of the limit surface.

/

Figure 18: A surface constructed from two given sections. The
cross curve second derivatives for the regular internal c-vertices
were calculated using (8). For boundary vertices, we Wak =

0.

Figure 19: the same surface as in figure 18 after introducing small
perturbations in the section curves.
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Interpolatory Subdivison for Quad-Meshes

A simple interpolatory subdivision scheme for quadrilateral nets are either non-interpolatory or defined tiiangular nets which is
with arbitrary topology is presented which generate’s shirfaces not appropriate for some engineering applications.
in the limit. The scheme satisfies important requirements for prac-  The scheme which we present here istationary refinement
tical applications in computer graphics and engineering. These re- schemg9], [3], i.e., the rules to compute the positions of the new
quirements include the necessity to generate smooth surfaces withpoints use simple affine combinations of points from the unrefined
local creases and cusps. The scheme can be applied to open netsiet. The termstationaryimplies that these rules are the same on
in which case it generates boundary curves that allow’gdin of every refinement Ie_vel. They are den\(ed froma mo_dlflcatlon of the
several subdivision patches. Due to the local support of the scheme,Well-known four-point scheme [6]. This scheme refines polgons by
adaptive refinement strategies can be applied. We present a simpleS L (pi) = (pj) with
device to preserve the consistency of such adaptively refined nets. oy = pi

2 = Pi

The original paper has been published in: , _ 8+w( . )_2( D) (11)
L Kobbelt Poiy1 = 16 Pi +Pi+1 16 Pi-1+Pit2
Interpolatory Subdivision on Open Quadri-
lateral Nets with Arbitrary Topology

Computer Graphics Forum 15 (1996), Eu-

rographics '96 issue, pp. 409-420

where 0< w < 2(v/5- 1) is sufficient to ensure convergence to a

smooth limiting curve [8]. The standard valueuis= 1 for which

the scheme has cubic precision. In order to minimize the number of

special cases, we restrict ourselves to the refinement of quadrilateral

nets. The faces are split as shown in Fig. 10 and hence, to complete

3.1 Introduction the definition of the operatd, we need rules for new points corre-
o ) ) sponding to edges and/or faces of the unrefined net. To generalize

The problem we address in this paper is the generation of smooththe algorithm for interpolating arbitrary nets, a precomputing step

interpolating surfaces of arbitrary topological type in the context of s needed (cf. Sect. 3.2).

practical applications. Such applications range from the design of

free-form surfaces and scattered data interpolation to high quality

rendering and mesh generation, e.g., in finite element analysis. The

standard set-up for this problem is usually given in a form equiva-

lent to the following:

A net N= (V,F) representing the input is to be mapped tea
fined net N= (V',F’) which is required to be a sufficiently close
approximation of a smooth surface. In this notation the getsd
V' contain thedata pointsp;, p; € R3 of the input or output respec-
tively. The sets andF’ represent théopological informationof
the nets. The elements BfandF’ are finite sequences of points
S CV ors, C V' each of which enumerates the corners of one not
necessarily plandaceof a net.

If all elementss, € F have length four thel is called aquadri- Figure 10: The refinement operator splits one quadrilateral face into
lateral net To achieve interpolation of the given data,c V' is four. The new vertices can be associated with the edges and faces
required. Due to the geometric background of the problem we as- of the unrefined net. All new vertices have valency four.
sumeN to befeasible i.e., at each poinp; there exists a plang
such that the projection of the faces meetingjadnto T, is injec- The major advantages that this scheme offers, are that it has the
tive. A net isclosedif every edge is part of exactly two faces. In  interpolation propertyndworks on quadrilateral nets. This seems
opennets, boundary edges occur which belong to one face only.  to be most appropriate for engineering applications (compared to

There are two major ‘schools’ for computihg from a givenN. non-interpolatory schemes or triangular nets), e.g., in finite element
The first or classic way of doing this is to explicitely find a collec-  analysis since quadrilateral (bilinear) elements are less stiff than tri-
tion of local (piecewise polynomial) parametrizatiopatche$ cor- angular (linear) elements [19]. The scheme provides the maximum

responding to the faces bf. If these patches smoothly join at com-  flexibility since it can be applied topennets witharbitrary topol-

mon boundaries they form an overall smooth patch complex. The ogy. It produces smooth surfaces and yields the possibility to gener-
netN' is then obtained by sampling each patch on a sufficiently fine ate local creases and cusps. Since the support of the scheme is local,
grid. The most important step in this approach is to find smoothly adaptive refinement strategies can be applied. We present a tech-
joining patches which represent a surface of arbitrary topology. A nique to keep adaptively refined n&@8-consistent (cf. Sect. 3.6)

lot of work has been done in this field, e.g., [16], [15], [17] ... and shortly describe an appropriate data structure for the implemen-
Another way to generathl’ is to define arefinement operator  tation of the algorithm.

S which directly maps nets to nets without constructing an explicit
parametrization of a surface. Such an operator performs both, a ) ) .
topological refinement of the net by splitting the faces andea 3.2 Precomputing: Conversion to Quadrilateral
ometricrefinement by determining the position of the new points Nets

in order to reduce the angles between adjacent faoasdthing.

By iteratively applyingS one produces a sequence of ntsvith

No =N andNi11 = SN;. If § has certain properties then the se-

; -
qL’Je_:ncelS( N converges to a smooth limiting surface and we can set 1,5’ cjit operation divides everysided face into quadrilaterals
N’ := S¥N for_some sufficiently largé. Algorithms of this kind and needs the position of newly computiade-pointsand edge-

are proposed in [2], [4], [14], [7], [10], and [11]. All these schemes  intsto be well-defined. The vertices &f remain unchanged.

It is a fairly simple task to convert a given arbitrary étinto a
quadrilateral neN. One straightforward solution is to apply one
single Catmull-Clark-typesplit C [2] to every face (cf. Fig. 11).



The number of faces in the modified Métequals the sum of the
lengths of all sequenceg € F.

The number of faces in the quadrilateralized Netan be re-
duced by half if the neN is closed, by not applyindc but
rather its (topological) square roefC, i.e., a refinement operator
whose double application is equivalent to one applicatio6 ¢¢f.

Fig. 11). For this split, only neviace-pointshave to be computed.
For open nets, the/C-split modifies the boundary polygon in a
non-intuitive way. Hence, one would have to handle several special
cases with boundary triangles if one is interested in a well-behaved
boundary curve of the resulting surface.

3.3 Subdivision Rules for Closed Nets with Arbi-
trary Topology

The topological structure of any quadrilateral net after several ap-
plications of a uniform refinement operator consists of large regu-
lar regions with isolated singularities which correspond to the non-
regular vertices of the initial net (cf. Fig. 12). Bgpological reg-
ularity we mean a tensor product structure with four faces meeting
at every vertex. The natural way to define refinement operators for
quadrilateral nets is therefore to modify a tensor product scheme
such that special rules for the vicinity of non-regular vertices are
found. In this paper we will use the interpolatory four-point scheme
[6] in its tensor product version as the basis for the modification.
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Figure 12: Isolated singularities in the refined net.

Consider a portion of a regular quadrilateral net with vertices
pi,j- The vertices can be indexed locally such that each face is rep-
resented by a sequensg = {pi,j,Pi+1,j,Pi+1,j+1,Pij+1}. The
points pi”j of the refined net can be classified into three disjunct

groups. The/ertex-pointsp’Zi,zj .= pj,j are fixed due to the interpo-
lation requirement. Thedge-pointy, ; ,; andp; 54 are com-
puted by applying the four-point rule (11) in the corresponding grid
direction, e.g.,

8+w W

Poit12) = 16 (PiiTPi+Lj) = 75 (Pi-1j +Pi2j).  (12)
Finally, the face-points p’2i+1’2j+l are computed by apply-
ing the four-point rule to either four consecutive edge-points
Poif12j-21 -+ Paiy12j14 ON OPS_2i 15+, P2ita2j42- ThE TeE-
sulting weight coefficient masks for these rules are shown in
Fig. 13. The symmetry of théacemask proves the equivalence
of both alternatives to compute the face-points. From the differen-
tiability of the limiting curves generated by the four-point scheme,
the smoothness of the limiting surfaces generated by infinitely re-
fining a regular quadrilateral net, follows immediately. This is a
simple tensor product argument.

For the refinement of irregular quadrilateral nets, i.e., nets which

Edge-point Face-Point:

—CE——0

Figure 13: Subdivision masks for regular regions witk= f%,
B=8Lando=0a2 p=ap,v=p>

for computing the edge-points. However, once all the edge-points
are known, there always are exactly two possibilities to choose four
consecutive edge-points when computing a certain face-point since
the net is quadrilateral. It is an important property of tensor product
schemes on regular nets that both possibilities lead to the same re-
sult (commuting univariant refinement operators). In order to mod-
ify the tensor product scheme as little as possible while generalizing
it to be applicable for nets with arbitrary topology, we want to con-
serve this property. Hence, we will propose a subdivision scheme
which only need®neadditional rule: the one for computing edge-
points corresponding to edges adjacent to a non-regular vertex. All
other edge-points and all face-points are computed by the applica-
tion of the original four-point scheme and the additional rule will be
such that both possibilities for the face-points yield the same result.
We use the notation of Fig. 14 for points in the neighborhood of
a singular vertex. The index is taken to benodulo nwheren is
the number of edges meetingmtApplying the original four-point
rule wherever possible leaves only the poirtsandy; undefined.
If we require that both possible ways to computéy applying the
standard four-point rule to succeeding edge-points lead to the same
result, we get a dependence relatig; to x;

8

(hi _hi+l)+ 8(4+W)

w
8

Xip1 = Xi + (Ki—2 —Kiy2)+

(ligz —li—1) + 4%\, (ligz —1i),

which can be considered as compatibility condition. In the regular
case, this condition is satisfied for any tensor product rule. The
compatibility uniquely defines the cyclic differencés = xj11 —

Xj which sum to zerotélescoping sumisHence, there always exists

a solution and even one degree of freedom is left for the definition
of thex;.
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Figure 14: Notation for vertices around a singular veRex

X

X;

include some vertices where other than four faces meet, a consistent

indexing which allows the application of the above rules is impos-
sible. If other than four edges meet at one vertex, it is not clear how
to choose the four points to which one can apply the above rule

The pointsx; will be computed by rotated versions of the same
subdivision mask. Thus, the vicinity @f will become more and
more symmetric while refinement proceeds. Hence, the distance
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Figure 11: Transformation of an arbitrary détinto a quadrilateral ne\l by one Catmull-Clark-spli€ (middle) or by its square root (right,
for closed nets).

betweenp and the center of gravity of the will be a good mea- applied. In the regular regions of the net (which enlarge during re-
sure for the roughness of the net npaaind the rate by which this  finement), the smoothness of the limiting surface immediately fol-
distance tends to zero can be understood as the ‘smoothing rate’lows from the smoothness of the curves generated by the univariate

The center of gravity in the regulan & 4) case is: four-point scheme. Hence to complete the convergence analysis,
it is sufficient to look at the vicinities of the finitely many isolated
1"l 44w 1t ownt singular vertices (cf. Fig. 12).
n iZ)Xi =g P+ iZ)“ ~8n izo hi. (13) Letpo,. .., Pk be the points from a fixed neighborhood of the sin-

gular vertexpg. The size of the considered neighborhood depends
on the support of the underlying tensor product scheme and con-

In the non-regular case, we have ; UL . .
tains 5 ‘rings’ of faces aroungdg in our case. The collection of

1 =1 1 =2 all rules to compute the new poingg, ..., p; of the same ‘scaled’
n ZOXi = Xj+ N Zo(n— 1-0) AXjyj, (5-layer-) neighborhood gip = pj, in the refined net can be repre-
i= i= (14) sented by a block-circulant matri such thatp; )i = A (pj);. This

matrix is called theefinement matrixAfter [1] and [18] the conver-
gence analysis can be reduced to the analysis of the eigenstructure
of A. For the limiting surface to have a unique tangent plargat

je{0,...,n—1}.

Combining common terms in the telescoping sum and equating the

right hand sides of (13) and (14) leads to it is sufficient that the leading eigenvaluesfokatisfy
4 4 M=11>A=As [A>Ai,Vi>4
Xj:f\ghﬁr%”ﬁr%vpf%w, (15) I

Table 2 shows theses eigenvalues of the refinement nfafdaxver-
where we define theirtual point tices withn adjacent edges in the standard case 1. The compu-
tation of the spectrum can be done by exploiting the block-circulant

4n-1 structure ofA. We omit the details here, because the dimension of
V= Z}Ii —(ljea+lj+1j41)+ Ais kx kwith k= 30n+1.
=
W . ke [(n][A [ A | A3 | Ai>a < |
27w Kimz Tkt ki tkje) (16) 3] L0 | 0.42633] 0.42633] 0.25
41/ 10| 05 0.5 0.25
4w n’lk_ 51 1.0 | 0.53794| 0.53794 | 0.36193
(4+w)n i; I 6 [| 1.0 | 0.55968| 0.55968 | 0.42633
- 7 1] 1.0 | 0.5732 | 0.5732 | 0.46972
Hence, thex; can be computed by applying (11) to the four points 8 || 1.0 | 0.58213| 0.58213| 0.5
hj,1j, pandvj. The formula also holds in the case- 4 wherev; = 9 ] 10 ] 0.58834| 0.58834| 0.52180

lj+2. Such a virtual poinv; is defined for every edge and both of

its endpoints. Hence to refine an edge which connects two singular Table 2: Leading eigenvalues of the subdivision matrix
verticesp; andpy, we first compute the two virtual pointg and

vz and then apply (11) te, p1, p2 andvs. If all edge-points¢; are

known, the refinement operation can be completed by computing |, aqgition to a uniquely defined tangent plane we also have to
the face-pointy|. These are well defined since the auxillary edge- 56 ocal injectivity in order to guarantee the regularity of the sur-
point rule is constructed such that both possible ways lead to the tyce This can be checked by looking at the natural parametrization

same result. of the surface apg which is spanned by the eigenvectorsfo€or-
responding to the subdominant eigenvaldgesandA3. The injec-
3.4 Convergence Analysis tivity of this parametrization is a sufficient condition. The details

o ) o . can be found in [18]. Fig. 15 shows meshes of ‘isolines’ of these
The subdivision scheme proposed in the last section is a station-characteristic maps which are well-behaved.

ary scheme and thus the convergence criteria of [1] and [18] can be
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Figure 15: Sketch of the characteristic maps in the neighborhood of singular vertices-wal®b, ..., 9.

3.5 Boundary Curves pn., PA is defined analogously.

it bdivisi h . diob dqi ical mod This modification of the original scheme does not affect the con-
a subdivision scheme Is supposed to be used in practical mod-ergance to a continuously differentiable limit, because the esti-

eling or reconstruction applications, it must provide features that ates for the contraction rate of the maximum second forward dif-
allow the definition of creases and cusps [12]. These requirementSgarence ysed in the convergence proof of [6] remain valid. This
can be satisfied if the scheme includes special rules for the refine-,o ophvious since the extrapolation only adds the zero component
ment olfoper;]neés WhéCh ylelcli weII-befhr?ved boundary curves thath A2p™; to the sequence of second order forward differences. The
interpolate the boundary polygons of the given net. Having suc = o : :
S main convergence criterion of [13] also applies.

gi\igroimseljrgggs‘?a?oﬁanabgom?ndoeriegog?] d’g'rn'nc%rtvv;oai%p?{gtes srléb It remains to define refinement rules for inner edges of the net

| 1ong . L y ISP which have one endpoint on the boundary and for faces including
sult from a topological hole in the initial net which geometrically at least one boundary vertex. To obtain these rules we use the same

locationp; = p (cf. Fig. 16). When computing the egde- and face-points refining the original net
that their limiting boundary curves only depend on these common qjated.
four-point rule to boundary polygons. Thus, the boundary curve L

Sssary pri=2p—— ‘ZQL
only generatsmoothboundary curves but rather to allgiecewise =
cut the boundary polygon into several segments by marking some For every boundary edgeq we add the extrapolated fact =
polygon. face can be proved by the sufficient criteria of [1] and [18]. This
(11) requires a well-defined 2-neighborhood. Therefore, we have be rewritten as a set of stationary refinement rules which define
po'PT. We define arextrapolatedpoint p™, := 2pg' — pf". The no longer block-circulant,

shrinks to a single point, i.e., a fase= {p1,...,pn} Of a given net P : A )
: oo . o euristic as in the univariate case. We extrapolate the unrefined
is deleted to generate a hole and its vertices are moved to the sam et over every boundary edge to get an additional layer of faces.
0 - . P - .
. I-Iro allow aC 'Jho'n between two subdivision lpatche_s_whose IN" by the rules from Sect. 3.3, these additional points can be used.
tially given nets have a common boundary polygon, it is necessary 15 complete the refinement step, the extrapolated faces are finally
po;]nts, i.e., the%’. musth_nokt) de_penld on ?ny inLerior' poinlt. Forour ) atq, ..., qr be theinner points of the net which are connected
scheme, we achieve this by simply applying the original univariate 1 yne pnoundary poinp then the extrapolated point will be
of the limiting surface is exactly the four-point curve which is de-
fined by the initial boundary polygon. Further, itis necessary to not
smooth boundary curves, e.g., in cases where more than two subdf the boundary poinp belongs to the face= {p,q,u,v} and is
division patches meet at a common point. In this case we have tonot connected to any inner vertex then we defirie= 2p — u.
vertices on the boundary as beingrner vertices Each segment {p,q,9",p*}.
between two corner vertices is then treated separately as an open Again, the tangent-plane continuity of the resulting limiting sur-
When dealing with open polygons, it is not possible to refine the is obvious since for a fixed number of interior edges adjacent to
first or the last edge by the original four-point scheme since rule some boundary vertgx, the refinement of the extrapolated net can
to find another rule for the poim** which subdivides the edge  the new points in the vicinity op as linear combinations of points
from the non-extrapolated net. However the refinement matrix is
point p'l“Jrl then results from the application of (11) to the sub-
polygonp™,, pg', pT, p3'". Obviously, this additional rule can be ex-

At every surface point lying on the boundary of a tangent plane
continuous surface, one tangent direction is determined by the tan-

pressed as a stationary linear combination of points from the non- gent of the boundary curve (which in this case is a four-point curve

extrapolated open polygon:

_ 8=w o 8+2w
= 16 Po 16 P1 —
m+1

The rule to compute the point; ™

w m
162 (17)

subdividing the last edge

m+1 .
P1

that does not depend on inner vertices). On boundaries, we can
therefore drop the requirement of [18] that the leading eigenval-
ues of the refinement matrix have to be equal. This symmetry
is only a consequence of the assumption that the rules to com-
pute the new points around a singular vertex are identical modulo
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Figure 16: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rotations (block-circulant refinement matrix). Although # A3 gions with high curvature while ‘flat’ regions may be approximated
causes an increasing local distortion of the net, the smoothness ofrather coarsely. Hence, in order to keep the amount of data reason-
the limiting surface is not affected. This effect can be viewed as able, the next step is to introduce adaptive refinement features.
a reparametrization in one direction. (Compare this to the distor- The decisionwhere high resolution refinement is needed,
tion of a regular net which is refined by binary subdivision in one strongly depends on the underlying application and is not discussed
direction and trinary in the other.) here. The major problem one always has to deal with when adap-
We summarize the different special cases which occur when re- tive refinement of nets is performed is to handle or elimii@ité-
fining an open net by the given rules. In Fig. 17 the net to be refined inconsistencies which occur when faces from different refinement
consists of the solid white faces while the extrapolated faces are levels meet. A simple trick to repair the resulting triangular holes
drawn transparently. The dark vertex is marked as a corner vertex.is to split the bigger face into three quadrilaterals in an Y-fashion
We have to distinguish five different cases: (cf. Fig 18). However this Y-split does not repair the hole. Instead
it shifts the hole to an adjacent edge. Only combining several Y-
elements such that they build a ‘chain’ connecting two inconsisten-
cies leads to an overall consistent net. The new vertices necessary
for the Y-splits are computed by the rules of Sect. 3.3. The fact
that every Y-element contains a singular= 3) vertex causes no
problems for further refinement because this Y-element is only of
temporary nature, i.e., if any of its three faces or any neighboring
face is to be split by a following local refinement adaption, then first
the Y-split is undone and a proper Catmull-Clark-type split is per-
formed before proceeding. While this simple technique seems to
be known in the engineering community, the author is not aware of
any reference where the theoretical background for this technique
is derived. Thus, we sketch a simple proof that shows under which
conditions this technique applies.

Figure 17: Occurences of the different special cases. P

A: Within boundary segments, we apply (11) to four succeeding
boundary vertices.

B: To the first and the last edge of an open boundary segment, we
apply the special rule (17).

C: Inner edge-points can be computed by application of (15).
necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four  giret in order to apply the Y-technique we have to restrict the
C-points can be found to which (11) can be applied. If there are nqjgered nets toalancednets. These are adaptively refined nets
two possibilities for the choice of these points then both lead to the (yithout Y-elements) where the refinement levels of neighboring
same result which is guaranteed by the construction of (15). faces differ at most by one. Non-balanced inconsistencies can not
E: In this case no appropriate sequence of four C-points can be be handled by the Y-technique. Hence, looking at a particular face
found. Therefore, one has to apply (17) to a B-point and the two C- sfrom then-th refinement level, all faces having at least one vertex
points following on the opposite side of the corner face. In order to in common withs are from the levelgn— 1), n, or (n+1). For
achieve independence of the grid direction, even in case the cornerthe proof we can think of first repairing all inconsistencies between
vertex is not marked, we apply (17) in both directions and compute leveln— 1 andn and then proceed with higher levels. Thus, without
the average of the two results. loss of generality, we can restrict our considerations to a situation
where all relevant faces are from leyel— 1) or n.
3.6 Adaptive Refinement A critical eo_lge is an edge, Whe_re a triangular hole occurs due
to different refinement levels of adjacent faces. A sequence of Y-
In most numerical applications, the exponentially increasing num- elements can always be arranged such that two critical edges are
ber of vertices and faces during the iterative refinement only allows connected, e.g., by surrounding one endpoint of the critical edge
a small number of refinement steps to be computed. If high acuracywith a 'corona’ of Y-elements until another critical edge is reached
is needed, e.g., in finite element analysis or high quality rendering, (cf. Fig. 19). Hence, on closed nets, we have to require the number
it is usually sufficient to perform a high resolution refinement in re- of critical edges to be even. (On open nets, any boundary edge can

if Figure 18: A hole in an adaptively refined net and an Y-element to
fill it.



stop a chain of Y-elements.) We show that this is always satisfied, FacedTyp Face9Typ Face4Typ
by induction over the number of faces from theh level within

an environment ofn— 1)-faces. Faces from generationsn or

< (n—1) do not affect the situation since we assume the net to be
balanced.

Figure 21: References between different kinds of faces.

oriented as shown in Fig. 20 and if both are marked this face has to
be refined by a proper Catmull-Clark-type split.
The correctness of this algorithm is obvious since the vertices
which are marked in the first phase are those which are common to
The first adaptive Catmull-Clark-type split on a uniformly re-  faces of different levels. The second phase guarantees that a corona
fined net produces four critical edges. Every succeeding split of Y-elements is built around each such vertex (cf. Fig. 19).
changes the number of critical edges by an even number between
—4 and 4, depending on the number of direct neighbors that have .
been split before. Thus the number of critical edges is always even.3-/ Implementation and Examples

However, then-faces might form a ring having in total an even The described algorithm is designed to be useful in practical ap-
number of critical edges which are separated into an odd number pjications. Therefore, besides the features for creating creases and
inside’ and an odd number ‘outside’. It turns out that this can-  cysps and the ability to adaptively refine a given quadrilateral net,
not happen: Let the inner region surrounded by the ring-faices efficiency and compact implementation are also important. Both
consist ofr quadrilaterals having a total number afédges which -~ can pe achieved by this algorithm. The crucial point of the im-
are candidates for being critical. Every edge which is shared by plementation is the design of an appropriate data structure which
two such quadrilaterals reduces the number of candidates by twog,pports an efficient navigation through the neighborhood of the
and thus the number of boundary edges of this inner region is againyertices. The most frequently needed access operation to the data
even. L . . structure representing the balanced net, is to enumerate all faces
The only situation where the above argument is not valid, occurs yhich |ie around one vertex or to enumerate all the neighbors of
when the considered net is open and has a hole with an odd numbegne vertex. Thus every vertex should be associated with a linked
of boundary edges. In this case, every loomdaces enclosing  |ist of the objects that constitute its vicinity. We propose to do this
this hole will have an odd number of critical edges on each side. jmpicitely by storing the topological information in a data struc-
Hence, we have to further restrict the class of nets to which we y,re Face4Typ which contains all the information of one quadri-
can apply the Y-technique topen balanced nets which have no |aterg| face, i.e., references to its four corner points and references
hole with an odd number of edgeShis restriction is not serious g its four directly neighboring faces. By these references, a doubly
because one can transform any given net in order to satisfy this |inked list around every vertex is available.
requirement by applying amitial uniform refinement stepefore Since we have to maintain an adaptively refined net, we need
adaptive refinement is started. Such an initial step is needed anyway,n aqditional datatype to consistently store connections between
if a given arbitrary net has to be transformed into a quadrilateral one 5ces from different refinement levels. We define another struc-
(cf. Sect. 3.2). . ture Face9Typ which holds references to nine vertices and eight
It remains to find aralgorithm to place the Y-elements cor-  neighbors. Thesenulti-facescan be considered as ‘almost’ split
rectly, i.e., to decide which critical edges should be connected by faces, where the geometric information (the new edge- and face-
a corona. This problem is nf)t tr|V|a! becaus;_e |nterf,erence between points) is already computed but the topological split has not yet
_the Y-elements building the ‘shores’ of two |_slands ru}fac_es ly- _been performed. If, during adaptive refinement, sawface is
ing close to each other, can occur. We describe an algorithm which gp|it then all its neighbors which are from the same generation are
only uses Iocgl information anq decides the orientation separately converted intoFace9Typ ’s. Since these faces have pointers to
for each face instead of ‘marching’ around the islands. eight neighbors, they can mimic faces from different generations
The initially given net (level 0) has_ been uniformly refined once 54 therefore connect them correctly. TIRace9Typ ’s are the
before the adaptive refinement begins (level 1). Let every vertex cangidates for the placement of Y-elements in order to re-establish
of the adaptively refined net be associated with the generation in consistency. The various references between the different kinds of
which it was introduced. Since all faces of the net are the result t5ces are shown in Fig. 21.
of a Catmull-Clark-type split (no Y-elements have been placed so T rgjieve the application program which decides where to adap-
far), they all have. the property that three of its vertices belong to tively refine, from keeping track of the balance of the net, the im-
the same generatianand the fourth vertex belongs to a generation - plementation of the refinement algorithm should perform recursive
g<g This fact yields a unigue orientation for every face. The (gfinement operations when necessary, i.e.nffacesis to be re-
algorithm starts by marking all vertices of the net which are end- fined then first alf{n— 1)-neighbors which have at least one vertex
points of a critical edge, i.e. if n—1)-face{p,q,...} meets two in common withs must be split.
nfaces{p,r,s,...} and{q,r,s,...} thenp andq are marked (cf. The following pictures are generated by using our experimen-
Fig. 18). After themarking-phasgthe Y-elements are placed. Let 5] jimplementation. The criterion for adaptive refinement is a dis-
s={p,q,u,v} be a face of the net whegeis the unique vertex  crete approximation of the Gaussian curvature. The running time
which belongs to an elder generation than the other three. _If r_1e|th_erof the algorithm is directly proportional to the number of computed
g norv are marked then no Y-element has to be placed within this points, i.e., to the complexity of the output-net. Hence, since the
face. If only one of them is marked then the Y-element has to be nymper of regions where deep refinement is necessary usually is

Figure 19: Combination of Y-elements



Figure 20: The orientation of the Y-elements depends on whether the vereeks are marked (black) or not (white). The status of vertices

p andu does not matter (gray).

fixed, we can reduce the space- and time-complexity from expo-
nential to linear (as a function of the highest occurring refinement
level in the output).
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Variational Subdivision Schemes

Leif Kobbelt*

Max-Planck-Institute for Computer Sciences

Preface an energy minimization process but when proceeding Wijth,
the vertices oP,.1 are not adjusted.

The generic strategy of subdivision algorithms which is to define  In the bivariate setting, i.e., the subdivision and optimization of
smooth curves and surfacalkgorithmically by giving a set of sim- triangle meshes, we start with a given control mBgtwhose ver-
ple rules for refining control polygons or meshes is a powerful tech- tices are to be interpolated by the resulting mesh. In this case it
nique to overcome many of the mathematical difficulties emerging turns out that the mesh quality can be improved significantly if we
from (polynomial) spline-based surface representations. In this sec-use all the vertices frorPny, \ Py for the optimization in themth
tion we highlight another application of the subdivision paradigm subdivision step.
in the context of high quality surface generation. Hence the algorithmic structure of variational subdivision degen-

From CAGD it is known that the technical and esthetic quality erates to an alternating refinement and (constrained) global opti-
of a curve or a surface does not only depend on infinitesimal prop- mization. In fact, from a different viewing angle the resulting al-
erties like theCX differentiability. Much more important seems to ~ gorithms perform like a multi-grid solver for the discretized op-
be thefairnessof a geometric object which is usually measured by timization problem. This observation provides the mathematical
curvature based energy functionals. A surface is hence consideredustification for thediscrete fairing approach

optimal if it minimizes a given energy functional subject to auxil- For the efficient fairing of continuous parameteric surfaces, the

iary interpolation or approximation constraints. major difficulties arise from the fact that geometrically meaningful
Subdivision and fairing can be effectively combined into what is  energy functionals depend on the control vertices in a highly non-

often refered to asariational subdivisioror discrete fairing The linear fashion. As a consequence we have to either do non-linear

resulting algorithms inherit the simplicity and flexibility of subdi-  optimization or we have to approximate the true functional by a
vision schemes and the resulting curves and surfaces satisfy the solinearized version. The reliability of this approximation usually
phisticated requirements for high end design in geometric modeling depends on how close to isometric the surface’s parameterization
applications. is. Alas, spline-patch-based surface representations often do not

The basic idea that leads to variational subdivision schemes is provide enough flexibility for an appropriate re-parameterization
that one subdivision step can be considered axpalogical split which would enable a feasible linearization of the geometric en-
operationwhere new vertices are introduced to increase the number ergy functional. Figure 1 shows two surfaces which are both op-
of degrees of freedom, followed bysmoothing operatiomwhere timal with respect to the same energy functional but for different
the vertices are shifted in order to increase the overall smooth- parameterizations.
ness. From this point of view is is natural to ask for the maxi-
mum smoothness that can be achieved on a given level of refine-
ment while observing prescribed interpolation constraints.

We use an energy functional as a mathematical criterion to rate
the smoothness of a polygon or a mesh. In the continuous setting,

such scalar valued fairing functionals are typically defined as an i \\\v“ <K o,«,
integral over a combination of (squared) derivatives. In the discrete /f'//%mﬁ\\‘?\\\\\ gyAVXI!‘ vﬂ»’v 'h'; ‘{\‘x‘\?\%‘
setting, we approximate such functionals by a sum over (squared) 4%1%}&\&}\\\‘ ’ Uiy fj{""‘%{\‘*‘&\ﬁ"'
divided differences. ‘ VAVAVAV ' ,44 AVA \ V
. . \
In the following we reproduce a few papers where this approach A‘

is described in more detail. In the univariate setting we con-
sider interpolatory variational subdivision schemes which perform Figure 1: Optimal surfaces with respect to the same functional and
a greedy optimization in the sense that when computing the poly- interpolation constraints but for different parameterizations (iso-
gon P 1 from Py, the new vertices’ positions are determined by metric left, uniform right).

*Computer Graphics Group, Max-Planck-Institute for Computer Sci-
ences, Im Stadtwald, 66123 Saartkén, Germanykobbelt@mpi-
sb.mpg.de

With the discrete fairing approach, we can exploit the auxiliary
freedom to define an individual local parameterization for every
vertex in the mesh. By this we find an isometric parameterization
for each vertex and since the vertices are in fact the only points
where the surface is evaluated, the linearized energy functional is a
good approximation to the original one.

The discrete fairing machinery turns out to be a powerful tool
which can facilitate the solution of many problems in the area of
surface generation and modeling. The overall objective behind the
presented applications will be the attempt to avoid, bypass, or at
least delay the mathematically involved generation of spline CAD-
models whenever it is appropriate.



|  Univariate Variational Subdivision

In this paper a new class of interpolatory refinement schemes is  Appropriate formalisms have been developed in (Cavaretta et al.,
presented which in every refinement step determine the new pointsl991), (Dyn & Levin, 1990), (Dyn, 1991) and elsewhere that allow
by solving an optimization problem. In general, these schemes arean easy analysis of sushationary schemesghich compute the new
global, i.e., every new point depends on all points of the polygon points by applying fixed banded convolution operators to the orig-
to be refined. By choosing appropriate quadratic functionals to be inal polygon. In (Kobbelt, 1995b) simple criteria are given which
minimized iteratively during refinement, very efficient schemes pro- can be applied to convolution schemes without any band limitation
ducing limiting curves of high smoothness can be defined. The wellas well (cf. Theorem 2).
known class of stationary interpolatory refinement schemes turns  (Dyn et al., 1992) and (Le BHau€& & Utreras, 1994) propose
out to be a special case of these variational schemes. non-linear refinement schemes which produce smooth interpolating
(CL) curves and additionally preserve the convexity properties of
the initial data. Both of them introduce constraints which locally
define areas where the new points are restricted to lie in. Another
possibility to define interpolatory refinement schemes is to dualize
corner-cutting algorithms (Paluszny et al., 1994). This approach
leads to more general necessary and sufficient convergence criteria.

In this paper we want to define interpolatory refinement schemes
in a more systematic fashion. The major principle is the following:
We are looking for refinement schemes for which, given a polygon
Pm, the refined polygorPy1 is as smooth as possibldn order
Interpolatory refinement is a very intuitive concept for the construc- to be able to compare the “smoothness” of two polygons we de-
tion of interpolating curves or surfaces. Given a set of quﬁts fine functionalsE(Pnyy1) which measure the total amount of (dis-

RY which are to be interpolated by a smooth curve, the first step of a crete) strain energy d?m,.1. The refinement operator then simply
refinement scheme consists in connecting the points by a piecewisechooses the new poin@i‘ﬂ such that this functional becomes a
linear curve and thus defining a polygBg = (pS, ...,p% ;). minimum. o _ _ _ _
This initial polygon can be considered as a very coarse approx- An important motivation for this approach is that in practice
imation to the final interpolating curve. The approximation can be good approximations to the final interpolating curves should be
improved by inserting new points between the old ones, i.e., by sub- achieved with little computational effort, i.e., maximum smooth-
dividing the edges of the given polygon. The positions of the new ness after a minimal number of refinement steps is wanted. In non-

The original paper which also contains the omitted
proofs has been published in:

L. Kobbelt
A Variational Approach to Subdivision
CAGD 13 (1996) pp. 743761, Elsevier

1.1 Introduction

points p%i“ have to be chosen appropriately such that the result-

ing (refined) polygorPy = (p3, ..., p3, ;) lookssmoothetthan the
given one in some sense (cf. Fig. 2). Interpolation of the given
points is guaranteed since the old piniQi p%i still belong to the
finer approximation.

By iteratively applying this interpolatory refinement operation,
a sequence of polygor(®m) is generated with vertices becoming
more and more dense and which satisfy the interpolation condition
p"= pgi‘” for alli andm. This sequence may converge to a smooth
limit Pe.

Many authors have proposed different schemes by explicitly giv-
ing particular rules how to compute the new poipggﬁ as a func-
tion of the polygonPm to be refined. In (Dubuc, 1986) a simple
refinement scheme is proposed which uses four neighboring ver-
tices to compute the position of a new point. The position is de-
termined in terms of the unique cubic polynomial which uniformly
interpolates these four points. The limiting curves generated by this

scheme are smooth, i.e., they are differentiable with respect to an

equidistant parametrisation.

Figure 2: Interpolatory refinement

In (Dyn et al., 1987) this scheme is generalized by introducing
an additional design or tension parameter. Replacing the interpo-
lating cubic by interpolating polynomials of arbitrary degree leads
to theLagrange-schemgwoposed in (Deslauriers & Dubuc, 1989).
Raising the degree {@k+ 1), every new point depends ¢k + 2)
old points of its vicinity. In (Kobbelt, 1995a) it is shown that at least
for moderatek these schemes produck-curves.

discrete curve design based, e.g., on splines, the concept of defining
interpolating curves by the minimization of some energy functional
(fairing) is very familiar (Meier & Nowacki, 1987), (Sapidis, 1994).
This basic idea of making a variational approach to the defini-
tion of refinement schemes can also be used for the definition of
schemes which produce smooth surfaces by refining a given trian-
gular or quarilateral net. However, due to the global dependence
of the new points from the given net, the convergence analysis of
such schemes strongly depends on the topology of the net to be
refined and is still an open question. Numerical experiments with
such schemes show that this approach is very promising. In this
paper we will only address the analysis of univariate schemes.

1.2 Known results

Given an arbitrary (open/closed) polygBm = (p"), thedifference
polygonAKPy, denotes the polygon whose vertices are the vectors
K

5, (

In (Kobbelt, 1995b) the following characterization of sequences
of polygons(Pm) generated by the iterative application of an inter-
polatory refinement scheme is given:

k .
) (o,

AkpM: i

Lemmal Let (Py) be a sequence of polygons. The scheme by
which they are generated is an interpolatory refinement scheme

(e, p" = pgi‘*l for all i and m) if and only if for all mk € N

the condition

kam+1
P2it]

kam K k
Ap = <)A
"3 (]

holds for all indices i of the polygot\ kP,



Also in (Kobbelt, 1995b), the following sufficient convergence
criterion is proven which we will use in the convergence analysis in
the next sections.

Theorem 2 Let (Pm) be a sequence of polygons generated by
the iterative application of an arbitrary interpolatory refinement
scheme. If

S ([2TAH Pl < o
m=0
for some le N then the sequend®n) uniformly converges to a
k-times continuously differentiable curi?e.

This theorem holds for all kinds of interpolatory schemes on
open and closed polygons. However, in this paper we will only
apply it to linear schemes whose support is global.

1.3 A variational approach to interpolatory
refinement

In this and the next two sections we focus on the refinement of

closedpolygons, since this simplifies the description of the refine-
ment schemes. Open polygons will be considered in Section 1.6.
Let Pm=(pg,...,pp ;) be a given polygon. We watfty,1 =
(pEL,...,p3r™) to be the smoothest polygon for which the inter-
polation conditiorpgrrl = p{" holds. Since the roughness at some
vertexpierl is a local property we measure it by a an operator

k

K(pI") = 3 ajpllity.
]:

The coefficientsx; in this definition can be an arbitrary finite se-

quence of real numbers. The indices of the vertit8s! are taken
modulo2n according to the topological structure of the closed poly-
gonPm1. To achieve full generality we introduce the shifuch
that K (p™**) depends omp{™*,...,p™! . Every discrete mea-
sure of roughnesK is associated with a characteristic polynomial

k .

7
> a;2.
=

Our goal is to minimize the total strain energy over the whole
polygonPp,.1. Hence we define

a(z)

2n-1
E(Pmer) = 3 K(pM™?

to be the energy functional which should become minimal. Since
the pointsprz?+l of Pmy1 with even indices are fixed due to the in-
terpolation condition, the point%‘jj with odd indices are the only
free parameters of this optimization problem. The unique minimum
of the quadratic functional is attained at the common root of all par-
tial derivatives:

@)

] K 9
~— vt E(Pm+1) = —1 KPS L)
apngJ_rll i; 6pr2r|1-|JjL 214+1+4r—i

@)

. +1
. . nM
Z_Z)OH _ZOGJ Pait1-it
=l j=

m+1
Por 14

K
ZiZZkBi

with the coefficients

k—i

‘ZOGI‘ Ajti
]:

Hence, the strain enerdy(Pms1) becomes minimal if the new
pointspg?ﬂ are the solution of the linear system

Bi=Bi= i=0,...,k (3)

m+1
Bo B2 Pa B2 1
B2 Bo B2 Ba p3- _
P o)
—B1 —B1 —Bs —B3 BE
—Bs —B1 —B1 —Bs 1
: : : pnm-,l

which follows from (2) by separation of the fixed poirpi§+l =
p™ from the variables. Here, both matrices are circulant and (al-
most) symmetric. A consequence of this symmetry is that the new
points do not depend on the orientation by which the vertices are
numbered (left to right or vice versa).

To emphasize the analogy between curve fairing and interpola-
tory refinement by variational methods, we call the equation

=0,...,n-1 (5)

k
Z Bi pg?j—llﬁ =0, !
i=—k
the Euler-Lagrange-equatian

Theorem 3 The minimization of BP,;1) has a well-defined solu-
tion if and only if the characteristic polynomial(z) for the local
measure K has no diametric roots=z+w on the unit circle with
Arg(w) € TN /n. (Proof to be found in the original paper)

Remark The setnN /2™ becomes dense in R for increasing re-
finement depthm — . Since we are interested in the smoothness
properties of the limiting curv®., we should drop the restriction
that the diametric roots have to have fsg € TN /n. Forstability
reasons we requir(z) to have no diametric roots on the unit circle
atall.

The optimization by which the new points are determined is a
geometric process. In order to obtain meaningful schemes, we have
to introduce more restrictions on the energy functiolats on the
measures of roughneks

For the expressioK?(p;) to be valid,K has to be vector valued,
i.e., the sum of the coefficients has to be zero. This is equivalent
toa(1l) =0. Since

i—ikBi - iijiuiuj - <,—§oaj>2

the sum of the coefficienf§ also vanishes in this case aaffine
invariance of the (linear) scheme is guaranteed because constant
functions are reproduced.

1.4

In the last section we showed that the minimization of a quadratic
energy functional (1) leads to the conditions (5) which determine
the solution. Dropping the variational background, we can more
generally prescribe arbitrary real coefficierfisy,...,Bk (with

Implicit refinement schemes



B_i = Bi to establish symmetry arfgiB; = 0 for affine invariance) The partial derivatives take a very simple form in this case
and define an interpolatory refinement scheme which chooses the

new pointsp'z?ﬂ of the refined polygorPy1 such that the homo- k 0 Akgml (12
geneous constraints Jom L Ex(Pmi1) = Z} JomL 1A 1l
241 i=0 OP2141
k
S Bpyi; =0 1=0..,n-1 6)
iZ=k -

K P (K
2 -%(_1)k+l <I) Akpg?i]i_i
are satisfied. We call these schemewlicit refinement schemes 1=
to emphasize the important difference to other refinement schemes
where usually the new points are computed by one oreaicitly 2(—1)kA2k m+1
given rules (cf. the ternmplicit curvesfor curves represented by Pat1-k:
f(x,y) = 0). The stationary refinement schemes are a special case

of the implicit schemes wheig;; = ;0. In general, the implicit and the corresponding Euler-Lagrange-equation is
schemes are non-stationary since the resulting weight coefficients —
by which the new pointp+7 are computed depend on the number A%poty =0, I=0,...,n—1 (8)

of vertices inPn. ) o 1
In (Kobbelt, 1995b) a general technique is presented which al-  Where, again, the indices of tipf"* are takermodulo2n. The
lows to analyse the smoothness properties of the limiting curve gen- characteristic polynomial of the underlying roughness meakure
erated by a given implicit refinement scheme. isa(z) = (z— 1)k and thus solvability and affine invariance of the
The next theorem reveals that the class of implicit refinement refinement scheme are guaranteed. The solution of (8) only requires
scﬂemes is not essentially larger than the class of variational the inversion of a banded circulant matrix with bandwidugﬁl.
schemes.
_ ) Theorem 5 The refinement scheme based on the minimization of
Theorem 4 LetB_y,...,Bx be an arbitrary symmetric set of real g, in (7) produces at least Gcurves. (Proof to be found in the
coefficientsB_ = 3j). Then there always exists a (potentially com-  original paper)
plex valued) local roughness measure K such that (6) is the Euler-
Lagrange-equation corresponding to the minimization of the energy  |n order to prove even higher regularities of the limiting curve
functional (1). (Proof to be found in the original paper) one has to combine more refinement steps. In (Kobbelt, 1995b)
a simple technique is presented that allows to do the convergence
Remark We do not consider implicit refinement schemes with analysis of such multi-step schemes numerically. Table 1 shows
complex coefficient$; since then (6) in general has no real solu- some results where denotes the number of steps that have to be
tions. combined in order to obtain these differentiabilities.
In analogy to the non-discrete case where the minimization of the
Example To illustrate the statement of the last theorem we look '”zﬂf‘?zra' over the squa_rddth _dt_arlvatlve_ has pIECewISe _p_olynomlal
at the 4-point scheme of (Dubuc, 1986). This is a stationary re- ¢~ solutions (B-splines), itis very likely that the limiting curves

finement scheme where the new poipst! are computed by the generated by iterative minimization Bf are actually irC%~2 too.
rule +1 The results given in Table 1 can be improved by combining more

thanr steps. Fok = 2,3, however, sufficiently many steps have
already been combined to veriBg, ¢ C%~2,

9 1
przr:ﬂ =16 (p"+pit1) — 16 (P" 1 +Pit2)-

r [diffty [ k [r [diffty |
2 c? 7 16] c
1

The scheme can be written in implicit form (6) wikh= 3 and
Biz =1, B2 =0, P11 = -9, Bo = 16 since the common factor

k
2
Tle is not relevant. The roots @8(z) arez; = ... =z =1 and 3|11 C: 8 | 4 Ci;
= —2++/3. From the construction of the last proof we obtain 42 C 9 16 C
%8 P 57| ¢ |10|4] c¥
6| 3 (& 11| 6| CI®

a(z) = (2+V3)— (3+V12) 24+ V32 +2Z

as one possible solution. Hence, the quadratic strain energy Table 1: Lower bounds on the differentiability Bf, generated by
which is minimized by the 4-point scheme is based on the local iterative minimization oEy(Pn).
roughness estimate

K(pi) = (2+V3)pi — (3+V12)pis1+ V3pit2 + Piss- For illustration and to compare the quality of the curves gener-
ated by these schemes, some examples are given in Fig. 3. The
PR . curves result from applying different schemes to the initial data

1.5 Minimization of differences Po=(...,0,1,0,...). We only show the middle part of one peri-
Theorem 2 asserts that a fast contraction rate of some higher differ-odic interval ofP,. As expected, the decay of the function becomes
ences is sufficient for the convergence of a sequence of polygons toslower as the smoothness increases.
a (k times) continuously differentiable limit curve. Thus it is nat-
ural to look for refinement schemes with a maximum contraction Remark Considering Theorem 2 it would be more appropri-
of differences. This obviously is an application of the variational 5¢6 19 minimize the maximum differenqeﬁk Pm||e instead of
approach. For the quadratic energy functional we make the ansatz ||Ak Pl However, this leads to non-linear refinement schemes

on—1 which are both, hard to compute and difficult to analyse. More-
Ex(Pmy1) = Zo \|Akp{”+1||2. ) over, in (Kobbelt, 1995a) it is shown that a contraction rate of



% iﬂ@%\’*‘
Figure 3: Discrete curvature plots of finite approximations to the curves generated by the four-point Bcfiegne C1) and the iterative
minimization ofE, (Pe, € C?), Ez (P € C*) andEs (Pw € C7).

| APl = O(2-™K) implies || AK Pyl = O(2-™(k=8)) for ev- Let E be a given quadratic energy functional. The solution of
erye > 0. It is further shown thaf| AKPy| = O(2=™K) is the its minimization over the window," ,...,p"} ;,, is computed by
theoretical fastest contraction which can be achieved by interpola- solving an Euler-Lagrange-equation

tory refinement schemes. Hence, the minimization| &K Pr||e

cannot improve the asymptotic behavior of the contraction. B (przﬁlei)ir:fr =C (pmi)irir- )

The matrix ofB~1C can be computed explicitly and the weight
coefficients by which a new poirpﬂill is computed, can be read

The convergence analysis of variational schemes in the case of operoff from the corresponding row iB—1C. Since the coefficients
finite polygons is much more difficult than it is in the case of closed depend orE andr only, this construction yields a stationary refine-
polygons. The problems arise at both ends of the polyd&ns ment scheme.
where the regular topological structure is disturbed. Therefore, we  For such local schemes the convergence analysis is independent
can no longer describe the refinement operation in terms of Toeplitz from the topological structure (open/closed) of the polygons to be
matrices but we have to use matrices which are Toeplitz matrices al-refined. The formalisms of (Cavaretta et al., 1991), (Dyn & Levin,
most everywhere except for a finite number of rows, i.e., except for 1990) or (Kobbelt, 1995b) can be applied.
the first and the last few rows. Minimizing the special energy function&y(P) from (7) over
However, one can show that in a middle region of the polygon open polygons allows the interesting observation that the resulting
to be refined the smoothing properties of an implicit refinement refinement scheme has polynomial precision of degred. This
scheme applied to an open polygon do not differ very much from is obvious since for points lying equidistantly parameterized on a
the same scheme applied to a closed polygon. This is due to the factpolynomial curve of degrek — 1, all k-th differences vanish and
that in both cases the influence of the old pojujtson a new point Ex(P) = 0 clearly is the minimum of the quadratic functional.

prznjtrll decrease exponentially with increasing topological distance _Since the 2+ 2 points which form the subpolygon

li — j| for all asymptotically stable schemes (Kobbelt, 1995a). P sPhgy, Uniquely define an interpolating polynomial

For the refinement schemes which iteratively minimize forward Of degree 241, it follows that the local schemes based on
differences, we can at least prove the following. the minimization ofEy(P) are identical fork > 2r + 2. These

schemes coincide with the Lagrange-schemes of (Deslauriers &
Theorem 6 The interpolatory refinement of open polygons by it- Dubuc, 1989). Notice thdt < 4r 4 2 is necessary because higher
eratively minimizing th@k-th differences, generates at leadt¢- differences are not possible on the polygug?ﬁr),...,przn(ﬁyrr)
curves. (Proof to be found in the original paper) and minimizingEx(P) = 0 makes no sense.

The statement of this theorem only gives a lower bound for the _1he local variational schemes provide a nice feature for prac-
differentiability of the limiting curveP.,. However, the author con-  tical purposes. One can use the refinement rules defined by the
jects that the differentiabilities agree in the open and closed polygon Ccoefficients in the rows oB~*C in (9) to compute points which

case. For special cases we can prove better results. subdivide edges near the ends of open polygons. Pure stationary
refinement schemes do not have this option and one therefore has

Theorem 7 The interpolatory refinement of open polygons by it- to deal withshrinking ends This means one only subdivides those
eratively minimizing the second differences, generates at I¢ast C edges which allow the application of the given subdivision mask
curves. (Proof to be found in the original paper) and cuts off the remaining part of the unrefined polygon.

If k> 2r + 2 then the use of these auxiliary rules causes the lim-
iting curve to have a polynomial segment at both ends. This can
be seen as follows. L& = (pg,...,p3) be a given polygon and
By now we only considered refinement schemes which are baseddenote the polynomial of degree 21 < k— 1 uniformly interpo-
on aglobal optimization problem. In order to construct local re- lating the pointspg,...,pgurl by f(x).
finement schemes we can restrict the optimization to some local  The first vertex of the refined polygd®y which not necessarily
subpolygon. This means a new popﬁj‘ill is computed by mini- lies on f(x) is p%r+3. Applying the same refinement scheme itera-
mizing some energy functional ovemandowp(" ,...,p" ;. As tively, we see that it)g"m is the first vertex oPm which does not lie
the index varies, the window is shifted in the same way.

1.6 Interpolatory refinement of open polygons

1.7 Local refinement schemes



on f(x) thenpg“mti = przné-,'_“l—Zr—l is the first vertex oPp, 1 with this [Dyn etal., 1987] Dyn, N. and Gregory, J. and Levin, D. (1987),
property. LetS = 2r + 2 and consider the sequence A 4-point interpolatory subdivision scheme for curve de-
sign, CAGD 4, 257-268
m .
lim 6_m = (2r4+2)—(2r+1) lim lefl =1 [Dyn & Levin, 1990] Dyn, N. and Levin, D. (1990), Interpolating
Mmoo 2 M= subdivision schemes for the generation of curves and sur-
o _ faces, in: HauBmann W. and Jetter K. eddultivari-
Hence, the limiting curvé®, has a polynomial segmerit(x) ate Approximation and Interpolatioiirkhauser Verlag,

between the pointpg and p?. An analog statement holds at the Basel

opposite end betweepf_; andp®.

This feature also arises naturally in the context of Lagrange-
schemes where the new points near the ends of an open polygon
can be chosen to lie on the first or last well-defined polynomial. It

can be used to exactly compute the derivatives at the endpagnts [Dyn, 1991] Dyn, N. (1991), Subdivision schemes in computer

[Dyn etal., 1992] Dyn, N. and Levin, D. and Liu, D. (1992), Inter-
polatory convexity-preserving subdivision schemes for
curves and surfaces, CAD 24, 221-216

andp? of the limiting curve and it also provides the possibility to aided geometric design, in: Light, W. eddvances in

smoothly connect refinement curves and polynomial splines. Numerical Analysis Il, Wavelets, Subdivisions and Ra-
dial Functions Oxford University Press

1.8 Computational Aspects [Golub & Van Loan, 1989] Golub, G. and Van Loan, C. (1989),

Since for the variational refinement schemes the computation of the Matrix ComputationsJohn Hopkins University Press

new pointspy;}; involves the solution of a linear system, the algo- [Kobbelt, 1995a] Kobbelt, L. (1995a)terative Erzeugung glatter

rithmic structure of these schemes is slightly more complicated than Interpolanten Universitit Karlsruhe

itis in the case of stationary refinement schemes. However, for the
refinement of an open polygd#i the computational complexity is  [Kobbelt, 1995b] Kobbelt, L. (1995b), Using the Discrete Fourier-
still linear in the length oPy. The matrix of the system that has Transform to Analyze the Convergence of Subdivision
to be solved, is a banded Toeplitz-matrix with a small number of Schemes, Appl. Comp. Harmonic Anal. 5 (1998), pp. 68—
pertubations at the boundaries.

In the closed polygon case, the best we can do is to solve the
circulant system in the Fourier domain. In particular, we transform [Kobbelt, 1995c] Kobbelt, L. (1995c), Interpolatory Refinement is
the initial polygonPgy once and then performm refinement steps Low Pass Filtering, in Daehlen, M. and Lyche, T. and
in the Fourier domain where the convolution operator becomes a Schumaker, L. eds., Math. Meth in CAGD Il

diagonal operator. The refined spectrﬁ’m is finally transformed
back in order to obtain the resu,. The details can be found in
(Kobbelt, 1995c). For this algorithm, the computational costs are

dominated by the discrete Fourier transformatiorﬁ’.efwhich can

be done inO(nlog(n)) = O(2™m) steps. This is obvious since the  [Le Méhau& & Utreras, 1994] Le Mhau€ A. and Utreras, F.

numbern = 2™ng of points in the refined polygofm allows to (1994), Convexity-preserving interpolatory subdivision,
apply msteps of the fast Fourier transform algorithm. CAGD 11, 17-37

The costs for computin®n, are thereforéd(m) per point com-
pared toO(1) for stationary schemes. However, since in practice [Paluszny etal., 1994] Paluszny M. and Prautzsch H. andfSch”
only a small number of refinement steps are computed, the constant M. (1994), Corner cutting and interpolatory refinement,
factors which are hidden within these asymptotic estimates are rele- Preprint
vant. Thus, the fact that implicit schemes need a smaller bandwidth
than stationary schemes to obtain the same differentiability of the [Sapidis, 1994] Sapidis, N. (1994pesigning Fair Curves and
limiting curve (cf. Table 1) equalizes the performance of both. SurfacesSIAM, Philadelphia

In the implementation of these algorithms it turned out that all ) ) , . .
these computational costs are dominated by the ‘administrative’ [Widom, 1965] Widom, H. (1965), Toeplitz matrices, in:
overhead which is necessary, e.g., to build up the data structures. Hirschmann, ‘1. ed., Studies in Real and Complex
Hence, the differences in efficiency between stationary and implicit Analysis MAA Studies in Mathematics 3
refinement schemes can be neglected.

[Meier & Nowacki, 1987] Meier, H. and Nowacki, H. (1987), In-
terpolating curves with gradual changes in curvature,
CAGD 4, 297-305
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Il Discrete Fairing

Many mathematical problems in geometric modeling are merely stationary schemes that exploit the piecewise regular structure of
due to the difficulties of handling piecewise polynomial parameter- iteratively refined meshes [2, 4, 9], there are more complex geo-
izations of surfaces (e.g., smooth connection of patches, evaluationmetric schemes [15, 8] that combine the subdivision paradigm with
of geometric fairness measures). Dealing with polygonal meshes isthe concept of optimal design by energy minimizati€air(ng).
mathematically much easier although infinitesimal smoothness can  The technical and practical advantages provided by the repre-
no longer be achieved. However, transferring the notion of fairness sentation of surfaces in the form of polygonal meshes stem from
to the discrete setting of triangle meshes allows to develop very the fact that we do not have to worry about infinitesimal inter-patch
efficient algorithms for many specific tasks within the design pro- smoothness and the refinement rules do not have to rely on the ex-
cess of high quality surfaces. The use of discrete meshes insteadstence of a globally consistent parameterization of the surface. In
of continuous spline surfaces is tolerable in all applications where contrast to this, spline based approaches have to introduce com-
(on an intermediate stage) explicit parameterizations are not nec- plicated non-linear geometric continuity conditions to achieve the
essary. We explain the basic techniquealistrete fairingand give flexibility to model closed surfaces of arbitrary shape. This is due
a survey of possible applications of this approach. to the topologically rather rigid structure of patches with triangular
or quadrilateral parameter domain and fixed polynomial degree of
cross boundary derivatives. The non-linearity of such conditions
makes efficient optimization difficult if not practically impossible.

The original paper has been published in:

L. K_obbelt ' _ _ On discrete meshes however, we can deldaal interpolants ac-
Variational Design with Parametric Meshes cording to local parameterizationshart which gives the freedom
of Arbitrary Topology to adapt the parameterization individually to the local geometry and

in Creating fair and shape preserving curves

topology.
and surfaces, Teubner, 1998

In the following we will shortly describe the conceptditcrete
fairing which is an efficient way to characterize and compute dense
21 point sets on high quality surfaces that observe prescribed interpo-

lation or approximation constraints. We then show how this ap-
Piecewise polynomial spline surfaces have been the standard repreproach can be exploited in several relevant fields within the area of
sentation for free form surfaces in all areas of CAD/CAM over the free form surface modeling.
last decades (and still are). However, although B-splines are op- The overall objective behind all the applications will be the at-
timal with respect to certain desirable properties (differentiability, temptto avoid, bypass, or at least delay the mathematically involved
approximation order, locality,. . ), there are several tasks that can- generation of spline CAD-models whenever it is appropriate. Espe-
not be performed easily when surface parameterizations are basedially in the early design stages it is usually not necessary to have an
on piecewise polynomials. Such tasks include the construction of explicit parameterization of a surface. The focus on polygonal mesh
globally smooth closed surfaces and the shape optimization by min- representations might help to free the creative designer from being
imizing intrinsically geometric fairness functionals [5, 12]. confined by mathematical restrictions. In later stages the conver-

Whenever it comes to involved numerical computations on free sion into a spline model can be based on more reliable information
form surfaces — for instance in finite element analysis of shells — about the intended shape. Moreover, since technical engineers are
the geometry is usually sampled at discrete locations and convertedused to performing numerical simulations on polygonal approxima-

Introduction

into a piecewise linear approximation, i.e., into a polygonal mesh.
Between these two opposite poles, i.e.,¢batinuousepresen-
tation of geometric shapes by spline patches andlibereterep-

tions of the true model anyway, we also might find short-cuts that
allow to speed up the turn-around cycles in the design process, e.g.,
we could alter the shape of a mechanical part by modifying the FE-

resentation by polygonal meshes, there is a compromise emergingmesh directly without converting back and forth between different

from the theory ofubdivision surfacef®]. Those surfaces are de-
fined by abase meshoughly describing its shape, andedinement
rule that allows one to split the edges and faces in order to obtain a
finer and smoother version of the mesh.

Subdivision schemes started as a generalizatiGmaf insertion
for uniform B-splines [11]. Consider a control melgh;] and the
knot vectors[u;] = [ihy] and[vi] = [ihy] defining a tensor product
B-spline surfacé&. The same surface can be given with respect to
the refined knot vectorgl] = [ihy/2] and [Vi] = [ihy/2] by com-
puting the corresponding control verticis j], each¢; j being a
simple linear combination of original verticeg;. It is well known

that the iterative repetition of this process generates a sequence o

meshe<, which converges to the spline surfagétself.

The generic subdivision paradigm generalizes this concept by
allowing arbitrary rules for the computation of the new control ver-
ticesG; j from the givenc; ;. The generalization also includes that

we are no longer restricted to tensor product meshes but can usg,
rules that are adapted to the different topological special cases in
meshes with arbitrary connectivity. As a consequence, we can use
any (manifold) mesh for the base mesh and generate smooth sur

faces by iterative refinement.

The major challenge is to find appropriate rules that guarantee
the convergence of the mesh&s generated during the subdivision
process to a smooth limit surfaée= C.. Besides the classical

CAD-models.

2.2 Fairing triangular meshes

The observation that in many applications the global fairness of a

surface is much more important than infinitesimal smoothness mo-

tivates thediscrete fairingapproach [10]. Instead of requirir@!

or G2 continuity, we simply approximate a surface by a plain trian-

gularC%— mesh. On such a mesh we can think of the (discrete) cur-

vature being located at the vertices. The téairing in this context
eans to minimize these local contributions to the total (discrete)
urvature and to equalize their distribution across the mesh.

We approximate local curvatures at every venteky divided
differences with respect to a locally isometric parameterizatjon
This parameterization can be found by estimating a tangent plane
Tp (or the normal vectony) at p and projecting the neighboring
erticesp; into that plane. The projected points yield the parameter
values(u;,V;) if represented with respect to an orthonormal basis
{ey,&v} spanning the tangent plane

pi—p = Uiey+Vviey+dinp.

Another possibility is to assign parameter values according to the
lengths and the angles between adjacent edtissréte exponential



map [15, 10].

To obtain reliable curvature information jati.e., second order
partial derivatives with respect to the locally isometric parameteri-
zationpp, we solve the normal equation of the Vandermonde system

T
vTv % fuu, fuvs % fw] =V [di]i

with V = [uZ,uvi,V2]; by which we get the best approximating
guadratic polynomial in the least squares sense. The rows of the in-
verse matrixVT V)~V T =: [a; ;] by which the Taylor coefficients
f. of this polynomial are computed from the déti;, contain the
coefficients of the corresponding divided difference operdiors
Computing a weighted sum of the squared divided differences is
equivalent to the discrete sampling of the corresponding continuous
fairness functional. Consider for example

/SK§+Kgds

which is approximated by

> o

(Hruu<pj—pi>u2+
Pi

(10)
2[Fu(p; — PIP + [Tl —pi)uz).

Notice that the value of (10) is independent of the particular choices
{ey, e} for each vertex due to the rotational invariance of the func-
tional. The discrete fairing approach can be understood as a gen
eralization of the traditional finite difference method to parametric

When solving the sparse linear system by iterative methods we
observe rather slow convergence. This is due to the low-pass fil-
ter characteristics of the iteration steps in a Gau3-Seidel or Jacobi
scheme. However since the mesh on which the optimization is per-
formed came out of a uniform refinement of the given mesiodi-
vision connectivitywe can easily find nested grids which allow the
application of highly efficient multi-grid schemes [6].

Moreover, in our special situation we can generate sufficiently
smooth starting configurations by midpoint insertion which allows
us to neglect the pre-smoothing phase and to reduce the V-cycle of
the multi-grid scheme to the alternation of binary subdivision and
iterative smoothing. The resulting algorithm has linear complexity
in the number of generated triangles.

The advantage of this discrete approach compared to the classi-
cal fair surface generation based on spline surfaces is that we do not
have to approximate a geometric functional that uses true curvatures
by one which replaces those by second order partial derivatives with
respect to the fixed parameterization of the patches. Since we can
use a custom tailored parameterization for each point evaluation of
the second order derivatives, we can choose this parameterization
to be isometric — giving us access to the true geometric functional.

Figure 4 shows an example of a surface generated this way. The
implementation can be done very efficiently. The shown surface
consists of about 50K triangles and has been generated on a SGI
R10000 (195MHz) within 10 seconds. The scheme is capable of
generating an arbitrarily dense set of points on the surface of min-
imal energy. It is worth to point out that the scheme works com-
pletely automatic: no manual adaption of any parameters is nec-
essary, yet the scheme produces good surfaces for a wide range of
input data.

meshes where divided difference operators are defined with respec2 4 Applications to interactive modeling

to locally varying parameterizations. In order to make the weighted
sum (10) of local curvature values a valid quadrature formula, the
weightswy; have to reflect the local area element which can be ap-
proximated by observing the relative sizes of the parameter trian-
gles in the local chartgy : pi —p — (U, vi).

Since the objective functional (10) is made up of a sum over
squared local linear combinations of vertices (in fact, of vertices
being direct neighbors of one central vertex), the minimum is char-
acterized by the solution of a global but sparse linear system. The
rows of this system are the partial derivatives of (10) with respect
to the movable verticep;. Efficient algorithms are known for the
solution of such systems [6].

2.3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a
set of interpolation and approximation constraints and fix the re-
maining degrees of freedom by minimizing an energy functional.
In the context of discrete fairing the constraints are given by an ini-
tial triangular mesh whose vertices are to be approximated by a fair
surface being topologically equivalent. The necessary degrees of
freedom for the optimization are obtained by uniformly subdivid-
ing the mesh and thus introducing nevovablevertices.

The discrete fairing algorithm requires the definition of a local
parameterizatiopl, for each vertex including the newly inserted

For subdivision schemes we can use any triangular mesh as a con-
trol mesh roughly describing the shape of an object to be modeled.
The flexibility of the schemes with respect to the connectivity of the
underlying mesh allows very intuitive modifications of the mesh.
The designer can move the control vertices just like for Bezier-
patches but she is no longer tied to the common restrictions on the
connectivity which is merely a consequence of the use of tensor
product spline bases.

When modeling an object by Bezier-patches, the control vertices
are the handles to influence the shape and the de Casteljau algorithm
associates the control mesh with a smooth surface patch. In our
more general setting, the designer can work oaraitrary triangle
mesh and the connection to a smooth surface is provided by the
discrete fairing algorithm. The advantages are that control vertices
are interpolated which is a more intuitive interaction metaphor and
the topology of the control structure can adapt to the shape of the
object.

Figure 5 shows the model of a mannequin head. A rather coarse
triangular mesh allows already to define the global shape of the
head (left). If we add more control vertices in the areas where more
detail is needed, i.e., around the eyes, the mouth and the ears, we
can construct the complex surface at the far right. Notice how the
discrete fairing scheme does not generate any artifacts in regions
where the level of detail changes.

ones. However, projection into an estimated tangent plane does not

work here, because the final positions of the new vertices are ob-
viously not known a priori. In [10] it has been pointed out that
in order to ensure solvability and stability of the resulting linear
system, it is appropriate to define the local parameterizations (lo-
cal metrics) for the new vertices fendingthe metrics of nearby
vertices from the original mesh. Hence, we only have to estimate
the local charts covering the original vertices to set-up the linear

2.5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be
used to generate fair surfaces that interpolate the vertices of a given
triangular mesh. A related problem is to smooth out high frequency
noise from a giveretailedmesh without further refinement. Con-
sider a triangulated surface emerging for example from 3D laser

system which characterizes the optimal surface. This can be doneScanning or iso-surface extraction out of CT volume data. Due to

prior to actually computing a solution and we omit an additional
optimization loop over the parameterization.

measurement errors, those surfaces usually show oscillations that
do not stem from the original geometry.
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Figure 4: A fair surface generated by the discrete fairing scheme. The flexibility of the algorithm allows to interpolate rather complex data by
high quality surfaces. The process is completely automatic and it took about 10 sec to compute the refined mesh with 50K triangles. On the
right you see the reflection lines on the final surface.
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Figure 5: Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry of the model. Notice that the
influence of one control vertex in a tensor product mesh is always rectangular which makes it difficult to model shapes with non-rectangular
features.

Constructing the above mentioned local parameterizations, we
are able to quantify the noise by evaluating the local curvature.
Shifting the vertices while observing a maximum tolerance can re-
duce the total curvature and hence smooth out the surface. From &!
signal processing point of view, we can interpret the iterative solv-
ing steps for the global sparse system as the application of recursive |
digital low-pass filters [13]. Hence it is obvious that the process ;r &
will reduce the high frequency noise while maintaining the low fre- | &
quency shape of the object. ; T

Figure 6 shows an iso-surface extracted from a CT scan of an|
engine block. The noise is due to inexact measurement and insta-*§
bilities in the extraction algorithm. The smoothed surface remains
within a tolerance which is of the same order of magnitude as the
diagonal of one voxel in the CT data.

2.6 Applications to surface interrogation Figure 6: An iso-surface extracted from a CT scan of an engine
. ) . ) ) block. On the left, one can clearly see the noise artifacts due to
Deriving curvature information on a discrete mesh is not only use- measurement and rounding errors. The right object was smoothed
ful for fair mterpolatlon or post—processmg of measured data. It can by m|n|m|z|ng the discrete fairing energy. Constraints on the posi_
also be used to visualize artifacts on a surface by plotting the color tional delocation were imposed.
coded discrete curvature directly on the mesh. Given for example
the output of the numerical simulation of a physical process: since
deformation has occurred during the simulation, this output typi-

- : - Using classical techniques from differential geometry would re-
gg'g;rfsg;sf: ;T\]/g?gﬁlgf a discrete mesh and no continuous surface ive 16 fit an interpolating spline surface to the data and then vi-

sualize the surface quality by curvature plots. The availability of



samples of second order partial derivatives with respect to locally
isometric parameterizations at every vertex enables us to show this
information directly without the need for a continuous surface.
Figure 7 shows a mesh which came out of the FE-simulation of
a loaded cylindrical shell. The shell is clamped at the boundaries
and pushed down by a force in normal direction at the center. The
deformation induced by this load is rather small and cannot be de-
tected by looking, e.g., at the reflection lines. The discrete mean
curvature plot however clearly reveals the deformation. Notice that
histogram equalization has been used to optimize the color contrast :
of the plot. i

2.7 Applications to hole filling and blending ) - ) ) )
Figure 8: The original data on the left is very sparse in the mid-

Another area where the discrete fairing approach can help is thedle region of the object. Triangulating the points in space and dis-
filling of undefined regions in a CAD model or in a measured data cretely fairing the iteratively refined mesh recovers more informa-
set. Of course, all these problems can be solved by fairing schemesion which makes least squares approximation much easier. On the
based on spline surfaces as well. However, the discrete fairing ap-right, reflection lines on the resulting surface are shown.

proach allows one to split the overall (quite involved) task into sim-

ple steps: we always start by constructing a triangle mesh defining

the global topology. This is easy becauseGioor higher bound- 2.8 Conclusion

ary conditions have to be satisfied. Then we can apply the discrete

fairing algorithm to generate a sufficiently dense point set on the ob- In this paper we gave a survey of currently implemented applica-
jective surface. This part includes the refinement and energy mini- tions of the discrete fairing algorithm. This general technique can
mization but it is almost completely automatic and does not have to be used in all areas of CAD/CAM where an approximation of the
be adapted to the particular application. In a last step we fit poly- actual surface by a reasonably fine triangular mesh is a sufficient
nomial patches to the refined data. Here we can restrict ourselvesrepresentation. If compatibility to standard CAD formats matters, a
to pure fitting since the fairing part has already been taken care of spline fitting post-process can always conclude the discrete surface
during the generation of the dense data. In other words, the discretegeneration or modification. This fitting step can rely on more infor-
fairing has recovered enough information about an optimal surface mation about the intended shape than was available in the original
such that staying as close as possible to the generated points (in &etting since a@enseset of points has been generated.

least squares sense) is expected to lead to high quality surfaces. To Aswe showed in the previous sections, mesh smoothing and hole
demonstrate this methodology we give two simple examples. filling can be done on the discrete structirefore switching to a

First, consider the point data in Figure 8. The very sparsely continuous representation. Hence, the bottom line of this approach
scattered points in the middle region make the task of interpolation is to do most of the work in the discrete setting such that the math-
rather difficult since the least squares matrix for a locally supported ematically more involved algorithms to generate piecewise poly-
B-spline basis might become singular. To avoid this, fairing terms nomial surfaces can be applied to enhanced input data with most
would have to be included into the objective functional. This how- common artifacts removed.
ever brings back all the problems mentioned earlier concerning the  We do not claim that splines could ever be completely replaced
possibly poor quality of parameter dependent energy functionals by polygonal meshes but in our opinion we can save a considerable
and the prohibitive complexity of non-linear optimization. amount of effort if we use spline models only where it is really

Alternatively, we can connect the points to build a spatial tri- necessary and stick to meshes whenever it is possible. There seems
angulation. Uniform subdivision plus discrete fairing recovers the to be a huge potential of applications where meshes do the job if we
missing information under the assumption that the original surface find efficient algorithms.
was sufficiently fair. The un-equal distribution of the measured data ~ The major key to cope with the genuine complexity of highly
points and the strong distortion in the initial triangulation do not detailed triangle meshes is the introduction of a hierarchical struc-
cause severe instabilities since we can define individual parameteri-ture. Hierarchies could emerge from classical multi-resolution tech-
zations for every vertex. These allow one to take the local geometry niques like subdivision schemes but could also be a by-product of
into account. mesh simplification algorithms.

Another standard problem in CAD is th#ending or filleting An interesting issue for future research is to find efficient and
between surfaces. Consider the simple configuration in Figure 9 numerically stable methods to enforce convexity preservation in the
where several plane faces (dark grey) are to be connected smoothlyfairing scheme. At least local convexity can easily be maintained
We first close the gap by a simple coarse triangular mesh. Suchby introducing non-linear constraints at the vertices.

a mesh can easily be constructed for any reasonable configuration Prospective work also has to address the investigation of explicit
with much less effort than constructing a piecewise polynomial rep- and reliable techniques to exploit the discrete curvature information
resentation. The boundary of this initial mesh is obtained by sam- for the detection of feature lines in the geometry in order to split a

pling the surfaces to be joined. given mesh into geometrically coherent segments. Further, we can

We then refine the mesh and, again, apply the discrete fairing try to identify regions of a mesh where the value of the curvature
machinery. The smoothness of the connection to the predefinedis approximately constant — those regions correspond to special
parts of the geometry is guaranteed by letting the blend surface geometries like spheres, cylinders or planes. This will be the topic
mesh overlap with the given faces by one row of triangles (all nec- of a forthcoming paper.
essary information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global faimess References

functional they enforce a smooth connection. In fact this technique ) )
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Figure 7: Visualizing the discrete curvature on a finite element mesh allows to detect artifacts without interpolating the data by a continuous

surface.

Figure 9: Creating a “monkey saddle“ blend surface to join six planes. Any blend surface can be generated by closing the gap with a triangular
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Abstract

We construct smooth parameterizations of irregular connectivity tri-
angulations of arbitrary genus 2-manifolds. Our algorithm uses hi-
erarchical simplification to efficiently induce a parameterization of

the original mesh over a base domain consisting of a small num-

ber of triangles. This initial parameterization is further improved

through a hierarchical smoothing procedure based on Loop sub-

division applied in the parameter domain. Our method supports
both fully automatic and user constrained operations. In the lat-

ter, we accommodate point and edge constraints to force the align-
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Figure 1: Overview of our algorithm. Top
left: a scanned input mesh (courtesy Cyber-
ware). Next the parameter or base domain,
obtained through mesh simplification. Top
right: regions of the original mesh colored
according to their assigned base domain
triangle. Bottom left: adaptive remeshing
with subdivision connectivitye(= 1%).
Bottom middle: multiresolution edit.

ment of iso-parameter lines with desired features. We show how
to use the parameterization for fast, hierarchical subdivision con-
nectivity remeshing with guaranteed error bounds. The remeshing
algorithm constructs an adaptively subdivided mesh directly with-
out first resorting to uniform subdivision followed by subsequent
sparsification. It thus avoids the exponential cost of the latter. Our
parameterizations are also useful for texture mapping and morphing
applications, among others.

CR Categories and Subject Descriptorsi.3.3 [Computer GraphicsPicture/Image
Generation — Display Algorithms, Viewing Algorithims3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - Curve, Surface, Solid and Object
Representations, Hierarchy and Geometric Transformations, Object Hierarchies
Additional Key Words and Phrases: Meshes, surface parameterization, mesh sim-
plification, remeshing, texture mapping, multiresolution, subdivision surfaces, Loop
scheme.

1 Introduction

Dense triangular meshes routinely result from a number of 3D ac-
quisition techniques, e.g., laser range scanning and MRI volumetric
imaging followed by iso-surface extraction (see Figure 1 top left).
The triangulations form a surface of arbitrary topology—genus,
boundaries, connected components—and have irregular connectiv-
ity. Because of their complex structure and tremendous size, these
meshes are awkward to handle in such common tasks as storage,
display, editing, and transmission.



Multiresolution representations are now established as a funda- proximation of a set of samples (e.qg. [14, 1, 17]), and (2) algorithms
mental component in addressing these issues. Two schools existwhich remesh an existing mesh with the goal of applying classical
One approach extends classical multiresolution analysis and subdi-multiresolution approaches [7, 8].
vision techniques to arbitrary topology surfaces [19, 20, 7, 3]. The A related, though quite different problem, is the maintenance of
alternative is more general and is based on sequential mesh simplifi-a given parameterization during mesh simplification [4]. We em-
cation, e.g., progressive meshes (PM) [12]; see [11] for a review. In phasize that our goal is thepnstructionof mappings when none
either case, the objective is to represent triangulated 2-manifolds inare given.
an efficient and flexible way, and to use this description in fastalgo-  In the following two sections, we discuss related work and con-
rithms addressing the challenges mentioned above. Our approachrast it to our approach.
fits in the first group, but draws on ideas from the second group.

An important element in the design of algorithms which manip-
ulate mesh approximations of 2-manifolds is the construction of

“nice” parameterizations when none are given. Ideally, the man- y5hne and co-workers [14] describe a fully automatic algorithm
ifold is parameterized over a base domain consisting of a small approximate a given polyhedral mesh with Loop subdivision
number of triangles. Once a surface is understood as a function paiches [18] respecting features such as edges and corners. Their
from the base domain inf&” (or higher-D when surface attributes  |0rithm uses a non-linear optimization procedure taking into ac-
are considered), many tools from areas such as approximation theqnt approximation error and the number of triangles of the base
ory, signal processing, and numerical analysis are at our disposal.gomain. The result is a smooth parameterization of the original
In p_articular, class@cal multir(_asolution analysis can be used in the polyhedral mesh over the base domain. Since the approach only
design and analysis of algorithms. For example, error controlled, \;se5 subdivision, small features in the original mesh can only be re-
adaptive remeshing can be performed easily and efficiently. Fig- go\yed accurately by increasing the number of triangles in the base
ure 1 shows the outline of our procedure: beginning with an irregu- 4omain accordingly. A similar approach, albeit using A-patches,
lar input mesh (top left), we find a base domain through mesh sim- 45 described by Bajaj and co-workers [1]. From the point of view
plification (top middle). Concurrent with simplification, a mapping o constructing parameterizations, the main drawback of algorithms
is constructed which assigns every vertex from the original mesh t0 j, thjs class is that the number of triangles in the base domain de-
a base triangle (top right). Using this mapping an adaptive remesh nengs heavily on the geometric complexity of the goal surface.
with subdivision connectivity can be built (bottom left) which is This problem was addressed in work of Krishnamurthy and
now suitable for such applications as multiresolution editing (bot- Levoy [17]. They approximate densely sampled geometry with bi-
tom middle). Additionally, there are other practical payoffs to good . 5i¢ spline patches and displacement maps. Arguing that a fully
parameterizations, for example in texture mapping and morphing. - 5 ,iomatic system cannot put iso-parameter lines where a skilled
In this paper we present an algorithm for the fast computation gnimator would want them, they require the user to lay out the en-
of smooth parameterizations of dense 2-manifold meshes with ar-jjre network of top level spline patch boundaries. A coarse to fine
bitrary topology. Specifically, we make the following contribu-  maiching procedure with relaxation is used to arrive at a high qual-

1.1.1 Approximation of a Given Set of Samples

tions ity patch mesh whose base domain need not mimic small scale ge-
e We describe a® (N log N) time and storage algorithm to con-  ometric features.
struct a logarithmic level hierarchy of arbitrary topology, ir- The principal drawback of their procedure is that the user is re-

regular connectivity meshes based on the Dobkin-Kirkpatrick quired to define thentire base domain rather then only selected
(DK) algorithm. Our algorithm accommodates geometric crite- features. Additionally, given that the procedure works from coarse
ria such as area and curvature as well as vertex and edge conto fine, it is possible for the procedure to “latch” onto the wrong
straints. surface in regions of high curvature [17, Figure 7].

e We construct a smooth parameterization of the original mesh

over the base domain. This parameterization is derived throughy 1 2 Remeshing

repeated conformal remapping during graph simplification fol-

lowed by a parameter space smoothing procedure based on thd.ounsbery and co-workers [19, 20] were the first to propose al-

Loop scheme. The resulting parameterizations are of high visual gorithms to extend classical multiresolution analysis to arbitrary

and numerical quality. topology surfaces. Because of its connection to the mathematical
foundations of wavelets, this approach has proven very attractive
(e.g0.[22, 7, 27, 8, 3, 28]). The central requirement of these meth-
ods is that the input mesh have subdivision connectivity. This is
generally not true for meshes derived from 3D scanning sources.

To overcome this problem, Eck and co-workers [7] developed
an algorithm to compute smooth parameterizations of high resolu-
tion polyhedral meshes over a low face count base domain. Using
such a mapping, the original surface can be remeshed using subdi-
vision connectivity. After this conversion step, adaptive simplifica-
tion, compression, progressive transmission, rendering, and editing
become simple and efficient operations [3, 8, 28].

Eck et al. arrive at the base domain through a Voronoi tiling of the
original mesh. Using a sequence of local harmonic maps, a param-
eterization which is smooth over each triangle in the base domain
1.1 Related Work and which meets witl"® continuity at base domain edges [7, Plate

1(f)] is constructed. Runtimes for the algorithm can be long be-
A number of researchers have considered—either explicitly or cause of the many harmonic map computations. This problem was
implicitly—the problem of building parameterizations for arbitrary recently addressed by Duchamp and co-workers [6], who reduced
topology, triangulated surfaces. This work falls into two main cat- the harmonic map computations from their init2d N*) complex-
egories: (1) algorithms which build a smoothly parameterized ap- ity to O(N log N) through hierarchical preconditioning. The hier-

e Using the smooth parameterization, we describe an algorithm
for adaptive, hierarchical remeshing of arbitrary meshes into
subdivision connectivity meshes. The procedure is fully auto-
matic, but also allows for user intervention in the form of fixing
point or path features in the original mesh. The remeshed man-
ifold meets conservative approximation bounds.

Even though the ingredients of our construction are reminiscent
of mesh simplification algorithms, we emphasize that our goal is
not the construction of another mesh simplification procedure, but
rather the construction of smooth parameterizations. We are par-
ticularly interested in using these parameterizations for remeshing,
although they are useful for a variety of applications.



archy construction they employed for use in a multigrid solver is by ¢(e;) = p;. The resulting polyhedron consists of points, seg-
related to our hierarchy construction. ments, and triangles R3.

The initial Voronoi tile construction relies on a number of heuris- Two vertices{i} and{j} areneighborsif {i,;} € K. A set
tics which render the overall algorithm fragile (for an improved of vertices isindependentf no two vertices are neighbors. A set
version see [16]). Moreover, there is no explicit control over the of vertices ismaximally independerit no larger independent set
number of triangles in the base domain or the placement of patch contains it (see Figure 3, left side). The 1-ring neighborhood of a

boundaries. vertex{:} is the set
The algorithm generates only uniformly subdivided meshes N(i e
which later can be decimated through classical wavelet methods. (1) ={j [ {i, 5} € K}.

Many extra globally subdivided levels may be needed to resolve
one small local feature; moreover, each additional level quadruples
the amount of work and storage. This can lead to the intermedi-
ate construction of many more triangles than were contained in the star(i) = U s,
input mesh.

TheoutdegreeK; of a vertex is its number of neighbors. Thiar
of a vertex{s} is the set of simplices

i€s, s€K

We say that K| is a two dimensional manifold (or 2-manifold)
1.2 Features of MAPS with boundaries if for each, |star(z)| is homeomorphic to a disk

Our algorithm was designed to overcome the drawbacks of previ- (interior vertex) or half-disk (boundary vertex) R*. An edge

ous work as well as to introduce new features. We use a fast coar-¢ = {,j} is called eboundary edgé there is only one fac¢ with

sification strategy to define the base domain, avoiding the potential € C f ] ) )

difficulties of finding Voronoi tiles [7, 16]. Since our algorithm pro- We define a conservative curvature estimate) = |r1| + |r2|

ceeds from fine to coarse, correspondence problems found in coars@t i, using the principal curvatures; and x2. These are esti-

to fine strategies [17] are avoided, and all features are correctly re- Mated by the standard procedure of first establishing a tangent plane

solved. We use conformal maps for continued remapping during &t p: and then using a second degree polynomial to approximate

coarsification to immediately produce a global parameterization of #([star(i)]).

the original mesh. This map is further improved through the use

of a hierarchical Loop smoothing procedure obviating the need for 2 2 Mesh Hierarchies

iterative numerical solvers [7]. Since the procedure is performed

globally, derivative discontinuities at the edges of the base domain An important part of our algorithm is the construction of a mesh

are avoided [7]. In contrast to fully automatic methods [7], the al- hierarchy. The original mestP, k) = (P*, k") is successively

gorithm supports vertex and edge tags [14] to constrain the param-simplified into a series of homeomorphic mestEs, £') with 0 <

eterization to align with selected features; however, the user is notl < L, where(P°, K°) is the coarsest or base mesh (see Figure 4).

required to specify the entire patch network [17]. During remeshing  Several approaches for such mesh simplification have been pro-

we take advantage of the original fine to coarse hierarchy to output posed, most notably progressive meshes (PM) [12]. In PM the basic

a sparse, adaptive, subdivision connectivity mesh directly without operation is the “edge collapse.” A sequence of such atomic oper-

resorting to a depth first oracle [22] or the need to produce a uni- ations is prioritized based on approximation error. The linear se-

form subdivision connectivity mesh at exponential cost followed by quence of edge collapses can be partially ordered based on topolog-

wavelet thresholding [3]. ical dependence [25, 13], which defines levels in a hierarchy. The
depth of these hierarchies appears “reasonable” in practice, though
can vary considerably for the same dataset [13].

2 Hierarchical Surface Representation Our approach is similar in spirit, but inspired by the hierarchy
proposed by Dobkin and Kirkpatrick (DK) [5], which guarantees

In this section we describe the main components of our algorithm, that the number of levels is O(log V). While the original DK hi-

coarsification and map construction. We begin by fixing our nota- €rarchy is built for convex polyhedra, we show how the idea behind

tion. DK can be used for general polyhedra. The DK atomic simplifi-
cation step is aertex removgefollowed by a retriangulation of the
hole.

2.1 Notation The two basic operations “vertex remove” and “edge collapse”

are related since an edge collapse into one of its endpoints corre-
When describing surfaces mathematically, it is useful to separate sponds to a vertex remove with a particular retriangulation of the
the topological and geometric information. To this end we in- resulting hole (see Figure 2). The main reason we chose an algo-
troduce some notation adapted from [24]. We denote a triangu- rithm based on the ideas of the DK hierarchy is that it guarantees a

lar mesh as a paifP, K), whereP is a set of N point positions logarithmic bound on the number of levels. However, we empha-
pi = (zi,yi,2:) € R®with 1 < i < N, andK is anabstract sim- size that the ideas behind our map constructions apply equally well
plicial complexwhich contains all the topological, i.e., adjacency to PM type algorithms.

information. The complexC is a set of subsets dfl,..., N

These subsets are called simplices and come in 3 types: vertices2 3 Vertex R |
v ={i} € K, edges = {i,j} € K, and facesf = {i, j,k} € K, ' ertex kemova
so that any non-empty subset of a simplexofs again a simplex  One DK simplification stegC! — K'~! consists of removing a

of K, e.g., if aface is present so are its edges gndeertices. maximally independent set of vertices with low outdegree (see Fig-
_Lete; denote the standardth basis vector ilR™. For each ure 3). To find such a set, the original DK algorithm used a greedy
simplex s, its topological realization|s| is the strictly convex hull approach based only dopologicalinformation. Instead, we use

of {e; | i € s}. Thus|{i}| = e;, [{3, j}| is the open line segment  a priority queue based on bageometric and topologicahforma-
betweene; ande;, and|{s, j, k}| is an open equilateral triangle.  tion.

The topological realizatiofiC| is defined asJse«|s|. Thegeomet- At the start of each level of the original DK algorithm, none of
ric realization(|K|) relies on alinear map : R — R? defined the vertices are marked and the set to be removed is empty. The



Vertex removal followed by retriangulation

Half edge collapse as vertex removal with special retriangulation

Mesh at level | ———————— Mesh at level I-1
. Figure 3: On the left a mesh with a maximally independent set of

vertices marked by heavy dots. Each vertex in the independent set
has its respective star highlighted. Note that the star’s of the inde-
pendent set do not tile the mesh (two triangles are left white). The

right side gives the retriangulation after vertex removal.

2.4 Flattening and Retriangulation

To find K'~*, we need to retriangulate the holes left by removing
the independent set. One possibility is to find a plane into which to
project the 1-ring neighborhood(|star(¢)|) of a removed vertex
©(|¢]) without overlapping triangles and then retriangulate the hole

in that plane. However, finding such a plane, which may not even
Figure 2:Examples of different atomic mesh simplification steps. At €xist, can be expensive and involves linear programming [4].
the top vertex removal, in the middle half-edge collapse, and edge Instead, we use the conformal met[6] which minimizes met-
collapse at the bottom. ric distortion to map the neighborhood of a removed vertex into the

) plane. Let{i} be a vertex to be removed. Enumerate cyclically
algorithm randomly selects a non-marked vertex of outdegree lessthe K, vertices in the 1-ringV'(i) = {jx | 1 < k < K} such

than 12, removes i_t and its star frc_)rti’, marks its n_eighbors as  that (k1,4 x} € K with jo = jx,. A piecewise linear ap-

unremovable z_;\nd iterates this until no further vertices can be re- ;. .~ aiion of 2%, which we denote by, is defined by its values

moved. In a triangulated surface the average outdegree of a verte>$0r the center point and 1-ring neighbors; namely(p;) = 0 and

is 6. Consequently, no more than half of the vertices can be of out- pi(pi,) = 8 exp(iby a), wherery, = |[p: — p;, |

degreel2 or more. Thus it is guaranteed that at leh&24 of the CNR k ' LRIk

vertices will be removed at each level [5]. In practice, it turns out k

one can remove roughly/4 of the vertices reflecting the fact that Or = Z L(Dji_y1>PisPhy)s

the graph is four-colorable. Given that a constant fraction can be —1

removed on each level, the number of levels behaveés(asz V).

The entire hierarchy can thus be constructed in linear time. anda = 2m/0k,. The advantages of the conformal map are nu-
In our approach, we stay in the DK framework, but replace the Merous: it always exists, it is easy to compute, it minimizes metric

random selection of vertices by a priority queue based on geometricdistortion, and itis a bijection and thus never maps two triangles on

information. Roughly speaking, vertices with small and flat 1-ring top of €ach other. Once the 1-ring is flattened, we can retriangulate

General Edge collapse operation

neighborhoods will be chosen first. At levielfor a vertexp; € the hole usin_g, for exam_ple, a constrained Del_alunay triangulation
P!, we consider its 1-ring neighborhogs|star(i)|) and compute  (CDT) (see Figure 5). This tells us how to buid .
its areaa(i) and estimate its curvature(i). These quantities are When the vertex to be removed is a boundary vertex, we map to a

half disk by setting: = 7 /6, (assumingj: andjx, are boundary
vertices and setting, = 0). Retriangulation is again performed
with a CDT.

computed relative téC', the current level. We assign a priority to
{1} inversely proportional to a convex combination of relative area
and curvature

a(?)

max,, cpt a(i)

LoD 3 Initial Parameterization

w,i) = A max,, cpt k(1)

To find a parameterization, we begin by constructing a bijection

(We foundX = 1/2 to work well in our experiments.) Omitting alll T from ([KC%|) to o(|K°|). The parameterization of the original

vertices of outdegree greater than 12 from the queue, removal of 8mesh over the base domain follows frai (o(|K°))). In other
constant fraction of vertices is still guaranteed. Because of the sort . ) L ® . .
implied by the priority queue, the complexity of building the entire vvoords, the mapplrgg of a point € SD(VC. |) throughll is a point
hierarchy grows t®(N log N). p° =1II(v) € ¢(|K”]), which can be written as
Figure 4 shows three stages (original, intermediary, coarsest) of 0 _ ) ]
the gK hierarchy. Given thgt tht(a cc?arsest mesh is h%meomorp)hic po=api+ B+ p
to the original mesh, it can be used as the domain of a parameteri-where{i, j, k} € K° is a face of the base domain ang3 and~y
zation. are barycentric coordinates, i.e.4+ 8+ v = 1.
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Figure 5:In order to remove a vertex;, its star(¢) is mapped from
3-space to a plane using the map. In the plane the central vertex
is removed and the resulting hole retriangulated (bottom right).

assign barycentric
coordinatesto old
point in new triangle

Figure 4: Example of a modified DK mesh hierarchy. At the top Figure 6:After retriangulation of a hole in the plane (see Figure 5),

the finest (original) meshy(|}C*|) followed by an intermediate

mesh, and the coarsest (base) megh®|) at the bottom (orig-
inal dataset courtesy University of Washington).

The mapping can be computed concurrently with the hierarchy

the just removed vertex gets assigned barycentric coordinates with
respect to the containing triangle on the coarser level. Similarly, all
the finest level vertices that were mapped to a triangle of the hole
now need to be reassigned to a triangle of the coarser level.

construction. The basic idea is to successivel}/ compute piecewise I'(p;) = o' pjr + B pur + v P fOr some trianglet’ =
)

linear bijectionsII’ betweeny(|*|) and ¢(|K
1%, which is the identity, and ending wiffi® = II.
Notice that we only need to compute the valudBfat the ver-

starting with

tices of K. At any other point it follows from piecewise linearity.

Assume we are givell! and want to comput&l'~!. Each vertex
{i} € K* falls into one of the following categories:

1. {i} € K'"*: The vertex is not removed on levelnd sur-

vives on levell — 1. In this case nothing needs to be done.

' (pi) = I (pi) = pi.

2. {i} € K"\ K'~*: The vertex gets removed when going from

ltol — 1. Consider the flattening of the 1-ring aroupd(see

Figure 5). After retriangulation, the origin lies in a triangle

which corresponds to some fate= {j, k,m} € K'~! and

has barycentric coordinatée;, 3, ) with respect to the ver-

tices of that face, i.eq pi(p;) + B pi(pr) + v pi(pm) (se€
Figure 6). In that case, 181"~ (p;) = ap; + Bk + ¥ Pm.

3. {i} € K*\K" The vertex was removed earlier, thus

Lin the vicinity of vertices inkC! a triangle{i, j, k} € K can straddle

multiple triangles iniC!. In this case the map depends on the flattening

strategy used (see Section 2.4).

{5/,k',m'} € K'. If ¢ € K'"', nothing needs to be
done; otherwise, the independent set guarantees that ex-
actly one vertex oft’ is removed, sayj'}. Consider the
conformal mapy;, (Figure 6). After retriangulation, the

w; (ps) lies in a triangle which corresponds to some face
t = {j,k,m} € K'~! with barycentric coordinategy, 3, v)
(black dots within highlighted face in Figure 6). In that case,
let II'"*(p;) = ap; + Bpr + v pm (i.€., all vertices in Fig-

ure 6 are reparameterized in this way).

Note that on every level, the algorithm requires a sweep through all
the vertices of the finest level resulting in an overall complexity of
O(NlogN).

Figure 7 visualizes the mapping we just computed. For each
pointp; from the original mesh, its mappidd(p;) is shown with a
dot on the base domain.

Caution:  Given that every association between a 1-ring and its
retriangulated hole is a bijection, so is the mappihg However,

II does not necessarily map a finest level triangle to a triangular
region in the base domain. Instead the image of a triangle may be
a non-convex region. In that case connecting the mapped vertices
with straight lines can cause flipping, i.e., triangles may end up on
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A Flattening into parameter plane A

Figure 7:Base domairp(|X°|). For each poinp; from the original
mesh, its mappindl(p;) is shown with a dot on the base domain. -

top of each other (see Figure 8 for an example). Two methods ex- Wriangulation
\/

ist for dealing with this problem. First one could further subdivide

the original mesh in the problem regions. Given that the underlying Figure 9:When a vertex with two incident feature edges is removed,

continuous map is a bijection, this is guaranteed to fix the prob- \ye want to ensure that the subsequent retriangulation adds a new
lem. The alternative is to use some brute force triangle unflipping feature edge to replace the two old ones.

mechanism. We have found the following scheme to work well:
adjust the parameter values of every vertex whose 2-neighborhood
contains a flipped triangle, by replacing them with the averaged pa-
rameter values of its 1-ring neighbors [7].

Y

{vi, vi+1} along thex-axis, and use two boundary type conformal
maps to the half disk above and below (cf. the last paragraph of
Section 2.4). When retriangulating the hole arowndwe put the
edge{v;_1,v:11} in K!7, tag it as a feature edge, and compute
a CDT on the upper and lower parts (see Figure 9). If we apply
similar procedures on coarser levels, we ensuredhandv; re-

main connected by a path (potentially a single edge) on the base
) ) domain. This guarantees tHatmaps the curved feature path onto
image of vertices the coarsest level edge(s) betwegrandv;.

In general, there will be multiple feature paths which may be
closed or cross each other. As usual, a vertex with more than 2
incident feature edges is considered a corner, and marked as unre-
movable.

) ) o The feature vertices and paths can be provided by the user or
Figure 8: Although the mappingdl from the original mesh to a  getected automatically. As an example of the latter case, we con-
base domain triangle is a bijection, triangles do not in general sjger every edge whose dihedral angle is below a certain threshold
get mapped to triangles. Three vertices of the original mesh get g pe 3 feature edge, and every vertex whose curvature is above a

mapped to a concave configuration on the base domain, causing certain threshold to be a feature vertex. An example of this strategy
the piecewise linear approximation of the map to flip the triangle. s jjjustrated in Figure 13.

image of triangle

3.1 Tagging and Feature Lines 3.2 A Quick Review

In the algorithm described so far, there isagriori control over
which vertices end up in the base domain or how they will be con-
nected. However, often there are features which one wants to pre-
serve in the base domain. These features can either be detecte
automatically or specified by the user.

We consider two types of features on the finest mesh: vertices
and paths of edges. Guaranteeing that a certain vertex of the orig-
inal mesh ends up in the base domain is straightforward. Simply
mark that vertex as unremovable throughout the DK hierarchy.

We now describe an algorithm to guarantee that a certain path of
edges on the finest mesh gets mapped to an edge of the base do-
main. Let{v; | 1 < i < I} C K" be a set of vertices on the
finest level which form a path, i.e{v;, vi11} is an edge. Tag all
the edges in the path as feature edges. Firsttamndv;, so called
dart points[14], as unremovable so they are guaranteed to end up
in the base domain. Let; be the first vertex on the interior of the  In this section, we consider remeshing using subdivision connectiv-
path which gets marked for removal in the DK hierarchy, say, when ity triangulations since it is both a convenient way to illustrate the
going from levell to ! — 1. Because of the independent set prop- properties of a parameterization and is an important subject in its
erty,v;—1 andv; 11 cannot be removed and therefore must belong to own right. In the process, we compute a smoothed version of our
K'=1. When flattening the hole aroung, tagged edges are treated  initial parameterization. We also show how to efficiently construct
like a boundary. We first straighten out the eddges_.,v;} and an adaptive remeshing with guaranteed error bounds.

Before we consider the problem of remeshing, it may be helpful
to review what we have at this point. We have established an ini-
jal bijectionTI of the original surface(|KC*|) onto a base domain
©(]K°|) consisting of a small number of triangles (e.g. Figure 7).
We use a simplification hierarchy (Figure 4) in which the holes af-
ter vertex removal are flattened and retriangulated (Figures 5 and 9).
Original mesh points get successively reparametrized over coarser
triangulations (Figure 6). The resulting mapping is always a bijec-
tion; triangle flipping (Figure 8) is possible but can be corrected.

4 Remeshing



4.1 Uniform Remeshing Instead, we use a much simpler and cheaper smoothing tech-

nique based on Loop subdivision. The main idea is to cormfiate

at a smoothed version of the dyadic points, rather then at the dyadic

points themselves (which can equivalently be viewed as changing

the parameterization). To that end, we define a h#om the base

domain to itself by the following modification of Loop:

o If all the points of the stencil needed for computing either a new
point or smoothing an old point are inside the same triangle of
the base domain, we can simply apply the Loop weights and the

Sincell is a bijection, we can usH ! to map the base domain

to the original mesh. We follow the strategy used in [7]: regu-
larly (1:4) subdivide the base domain and use the inverse map to
obtain a regular connectivity remeshing. This introduces a hierar-
chy of regular meshe@™,R™) (Q is the point set an® is the
complex) obtained fromn-fold midpoint subdivision of the base
domain(P°, K°) = (Q°,R°). Midpoint subdivision implies that

all new domain points lién the base domairQ™ C ¢(|R°|) and

IR™| = |R°|. All vertices of R™ \ R have outdegree 6. The new points will be in that same face.

uniform remeshing of the original mesh on level is given by o If the stencil stretches across two faces of the base domain, we

(IQm),R™). flatten them out using a “hinge” map at their common edge.
We thus need to compulé™'(q) whereq is a point in the base We then compute the point’s position in this flattened domain

domain with dyadic barycentric coordinates. In particular, we need  and extract the triangle in which the point lies together with its

to compute which triangle ap(|KX|) containsII=!(q), or, equiv- barycentric coordinates.

alently, which triangle OH(Q(VCL[)) containsg. This is a stan- e If the stencil stretches across multiple faces, we use the confor-

dardpoint locationproblem in an irregular triangulation. We use mal flattening strategy discussed earlier.

the point location algorithm of Brown and Faigle [2] which avoids
looping that can occur with non-Delaunay meshes [10, 9]. Once we
have found the triangl¢:, j, £} which containgg, we can writeg

Note that the modifications to Loop fora&to map the base do-
main onto the base domain. We emphasize that weotlapply the
classic Loop scheme (which would produce a “blobby” version of

as : L
g = aTl(p:) + BII(p;) + ~ TT(p), g;g(;:)l?cs: Iijé)(:gaslz)r.faNcggére the surface approximations that we later
and thus The composite mapl~! o £ is oursmoothed parameterization
that maps the base domain onto the original surface. rhkth
I '(q) = api + Bp; +vpr € (L)) level of uniform remeshing with the smoothed parameterization is

_ ) _ (Mo £L(Q™),R™), whereQ™, as before, are the dyadic points
Figure 10 shows the result of this procedure: a level 3 uniform on the base domain. Figure 11 shows the result of this procedure:

remeshing of a 3-holed torus using ffie* map. a level 3 uniform remeshing of a 3-holed torus using the smoothed
parameterization.

A note on complexity: The point location algorithm is essen- When the mesh is tagged, we cannot apply smoothing across the

tially a walk on the finest level mesh with complex@(\/ﬁ). Hi- tagged edges since this would break the alignment with the features.

erarchical point location algorithms, which have asymptotic com- 1herefore, we use modified versions of Loop which can deal with
plexity O(log V), exist [15] but have a much larger constant. Given COMers, dart points and feature edges [14, 23, 26] (see Figure 13).
that we schedule the queries in a systematic order, we almost always
have an excellent starting guess and observe a constant number of
steps. In practice, the finest level “walking” algorithm beats the hi-
erarchical point location algorithms for all meshes we encountered
(up to100K faces).
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Figure 11:The same remeshing of the 3-holed torus as in Figure 10,
but this time with respect to a Loop smoothed parameterization.
Note: Because the Loop scheme only enters in smoothingahe
rameterizatiorthe surface shown is still a sampling of the original
meshnota Loop surface approximation of the original.

Figure 10:Remeshing of 3 holed torus using midpoint subdivision.
The parameterization is smooth within each base domain triangle,
but clearly not across base domain triangles.
4.3 Adaptive Remeshing

One of the advantages of meshes with subdivision connectivity is
that classical multiresolution and wavelet algorithms can be em-
ployed. The standard wavelet algorithms used, e.g., in image com-
It is clear from Figure 10 that the mapping we used is not smooth pression, start from the finest level, compute the wavelet transform,
across global edges. One way to obtain global smoothness is toand then obtain an efficient representation by discarding small
consider a map that minimizes a global smoothness functional andwavelet coefficients. Eck et al. [7, 8] as well as Certain et al. [3] fol-
goes frome(|KCE|) to |K°| rather than top(]X°]). This would low a similar approach: remesh using a uniformly subdivided grid
require an iterative PDE solver. We have found computation of followed by decimation through wavelet thresholding. This has the
mappings to topological realizations that live in a high dimensional drawback that in order to resolve a small local feature on the origi-
space to be needlessly cumbersome. nal mesh, one may need to subdivide to a very fine level. Each extra

4.2 Smoothing the Parameterization



level quadruples the number of triangles, most of which will later ones. The application was written in C++ using standard compu-
be decimated using the wavelet procedure. Imagine, e.g., a planetational geometry data structures, see e.g. [21], and all timings re-
which is coarsely triangulated except for a narrow spike. Making ported in this section were measured on a 200 MHz PentiumPro
the spike width sufficiently small, the number of levels needed to personal computer.

resolve it can be made arbitrarily high.

In this section we present an algorithm which avoids first build-
ing a full tree and later pruning it. Instead, we immediately build the
adaptive mesh with a guaranteed conservative error bound. This is
possible because the DK hierarchy contains the information on how
much subdivision is needed in any given area. Essentially, we let
the irregular DK hierarchy “drive” the adaptive construction of the
regular pyramid.

We first compute for each triangtec K° the following error
quantity:

E(t) = max dist(p;, o(|t]))-
®) pi€PLandIl(p;)€p(It]) s> (1))
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This measures the distance between one triangle in the base domain
and the vertices of the finest level mapped to that triangle.
The adaptive algorithm is now straightforward. Set a certain rel-

ative error threshold. ComputeE(t) for all triangles of the base WA \/

domain. If E(t)/B, whereB is the largest side of the bounding X N\ w'; WM

box, is larger thar, subdivide the domain triangle using the Loop S N \\\’%N V#‘%

procedure above. Next, we need to reassign vertices to the triangles QSNSS SOOI %nm \
_ .. i . L \‘ A »«v‘ w‘“vﬂ“ \

of levelm = 1. This is done as follows: For each popmt € P VA o\ Y

consider the triangle of X° to which it it is currently assigned. NN

Next consider the 4 children afon level 1,t; with j = 0,1,2,3

and compute the distance betwggrand each of the(|t;]). As-
signp; to the closest child. Once the finest level vertices have been
reassigned to level 1 triangles, the errors for those triangles can be
computed. Now iterate this procedure until all triangles have an
error below the threshold. Because all errors are computed from
the finest level, we are guaranteed to resolve all features within the
error bound. Note that we are not computing the true distance be-
tween the original vertices and a given approximation, but rather an

easy to compute upper bound for it.

In order to be able to compute the Loop smoothing nfapn ‘ %r{\‘\\‘\ 'm
an adaptively subdivided grid, the grid needs to satisfeex re- 1}35551?@“\ A\
striction criterion, i.e., if a vertex has a triangle incident to it with V}}gg}&%ﬁgﬂl\\\‘\\ 3
depthi, then it must have a complete 1-ring at level 1 [28]. This Vﬂ@:ﬁn \\\
restriction may necessitate subdividing some triangles even if they "‘5 \\\

are below the error threshold. Examples of adaptive remeshing can
be seen in Figure 1 (lower left), Figure 12, and Figure 13.
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Figure 13: Left (top to bottom): three levels in the DK pyramid,
finest € = 15) with 12946, intermediate (= 8) with 1530, and
coarsest { = 0) with 168 triangles. Feature edges, dart and cor-
ner vertices survive on the base domain. Right (bottom to top):
adaptive mesh with = 5% and 1120 triangles (bottomg, = 1%

and 3430 triangles (middle), and uniform level 3 (top). (Original
dataset courtesy University of Washington.)
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The first example used throughout the text is the 3-holed torus.
The original mesh contained 11776 faces. These were reduced in
Figure 12:Example remesh of a surface with boundaries. the DK hierarchy to 120 faces over 14 levels implying an average
removal of 30% of the faces on a given level. The remesh of Fig-
ure 11 used 4 levels of uniform subdivision for a total of 30720
triangles.
5 Results The original sampled geometry of the 3-holed torus is smooth
and did not involve any feature constraints. A more challenging
We have implemented MAPS as described above and applied it tocase is presented by the fandisk shown in Figure 13. The original
a number of well known example datasets, as well as some newmesh (top left) contains 12946 triangles which were reduced to 168



Figure 14: Example of a constrained parameterization based on user input. Top: original input mesh (100000 triangles) with edge tags
superimposed in red, green lines show some smooth iso-parameter lines of our parameterization. The middle shows an adaptive subdivision
connectivity remesh. The bottom one patches corresponding to the eye regions (right eye was constrained, left eye was not) are highlighted to
indicate the resulting alignment of top level patches with the feature lines. (Dataset courtesy Cyberware.)

faces in the base domain over 15 levels (25% average face removakxample illustrates how one places constraints like Krishnamurthy
per level). The initial mesh had all edges with dihedral angles be- and Levoy [17]. We remove the need in their algorithms to specify
low 75° tagged (1487 edges), resulting in 141 tagged edges at thethe entire base domain. A user may want to control patch outlines
coarsest level. Adaptive remeshing to withie= 5% ande = 1% for editing in one region (e.g., on the face), but may not care about
(fraction of longest bounding box side) error results in the meshes what happens in other regions (e.g., the back of the head).
shown in the right column. The top right image shows a uniform We present a final example in Figure 1. The original mesh
resampling to level 3, in effect showing iso-parameter lines of the (96966 triangles) is shown on the top left, with the adaptive, subdi-
parameterization used for remeshing. Note how the iso-parametenision connectivity remesh on the bottom left. This remesh was
lines conform perfectly to the initially tagged features. subsequently edited in a interactive multiresolution editing sys-
This dataset demonstrates one of the advantages of our method—tem [28] and the result is shown on the bottom middle.
inclusion of feature constraints—over the earlier work of Eck et
al. [7]. In the original PM paper [12, Figure 12], Hoppe shows the .
simplification of the fandisk based on Eck’s algorithm which does 6 Conclusions and Future Research
not use tagging. He points out that the multiresolution approxima-
tion is quite poor at low triangle counts and consequently requires We have described an algorithm which establishes smooth parame-
many triangles to achieve high accuracy. The comparison betweenterizations for irregular connectivity, 2-manifold triangular meshes
our Figure 13 and Figure 12 in [12] demonstrates that our multires- of arbitrary topology. Using a variant of the DK hierarchy con-
olution algorithm which incorporates feature tagging solves these struction, we simplify the original mesh and use piecewise linear
problems. approximations of conformal mappings to incrementally build a
Another example of constrained parameterization and subse-parameterization of the original mesh over a low face count base
guent adaptive remeshing is shown in Figure 14. The original domain. This parameterization is further improved through a hier-
dataset (100000 triangles) is shown on the left. The red lines in- archical smoothing procedure which is based on Loop smoothing in
dicate user supplied feature constraints which may facilitate subse-parameter space. The resulting parameterizations are of high qual-
guent animation. The green lines show some representative iso-ity, and we demonstrated their utility in an adaptive, subdivision
parameter lines of our parameterization subject to the red fea- connectivity remeshing algorithm that has guaranteed error bounds.
ture constraints. Those can be used for computing texture coor- The new meshes satisfy the requirements of multiresolution repre-
dinates. The middle image shows an adaptive subdivision connec-sentations which generalize classical wavelet representations and
tivity remesh with 74698 triangles (= 0.5%). On the right we are thus of immediate use in applications such as multiresolution
have highlighted a group of patches, 2 over the right (constrained) editing and compression. Using edge and vertex constraints, the
eye and 1 over the left (unconstrained) eye. This indicates how userparameterizations can be forced to respect feature lines of interest
supplied constraints force domain patches to align with desired fea- without requiring specification of the entire patch network.
tures. Other enforced patch boundaries are the eyebrows, center In this paper we have chosen remeshing as the primary applica-
of the nose, and middle of lips (see red lines in left image). This tion to demonstrate the usefulness of the parameterizations we pro-



Dataset Inputsize Hierarchy Levels 7P°size Remeshing Remesh Output size
(triangles) creation (triangles) tolerance creation (triangles)
3-hole 11776 18 (s) 14 120 (NA) 8 (s) 30720
fandisk 12946 23 (s) 15 168 1% 10 (s) 3430
fandisk 12946 23 (s) 15 168 5% 5 (s) 1130
head 100000 160 (s) 22 180 0.5% 440 (s) 74698
horse 96966 163 (s) 21 254 1% 60 (s) 15684
horse 96966 163 (s) 21 254 0.5% 314 (s) 63060

Table 1:Selected statistics for the examples discussed in the text. All times are in seconds on a 200 MHz PentiumPro.

duce. The resulting meshes may also find application in numerical [10]
analysis algorithms, such as fast multigrid solvers. Clearly there
are many other applications which benefit from smooth parame-
terizations, e.g., texture mapping and morphing, which would be [11]
interesting to pursue in future work. Because of its independent set
selection the standard DK hierarchy creates topologically uniform [12]
simplifications. We have begun to explore how the selection can

be controlled using geometric properties. Alternatively, one could [13]
use a PM framework to control geometric criteria of simplification.
Perhaps the most interesting question for future research is how to[14]
incorporate topology changes into the MAPS construction.
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Subdivision Surfaces in Character Animation

Tony DeRose Michael Kass Tien Truong

Pixar Animation Studios

Figure 1: Geri.

Abstract ing provably smooth variable-radius fillets and blends. Second, we
developed methods for using subdivision surfaces in clothing sim-
The creation of believable and endearing characters in computerulation including a new algorithm for efficient collision detection.
graphics presents a number of technical challenges, including theThird, we developed a method for constructing smooth scalar fields
modeling, animation and rendering of complex shapes such ason subdivision surfaces, thereby enabling the use of a wider class
heads, hands, and clothing. Traditionally, these shapes have beewf programmable shaders. These developments, which were used
modeled with NURBS surfaces despite the severe topological re- extensively in our recently completed short fideri's game have
strictions that NURBS impose. In order to move beyond these re- become a highly valued feature of our production environment.
strictions, we have recently introduced subdivision surfaces into our ) ) )
production environment. Subdivision surfaces are not new, but their CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
use in high-end CG production has been limited. ometry and Object Modeling; 1.3.3 [Computer Graphics]: Pic-
Here we describe a series of developments that were requiredtUre/Image Generation.
in order for subdivision surfaces to meet the demands of high-end

production. First, we devised a practical technique for construct- 1 Motivation

The most common way to model complex smooth surfaces such
as those encountered in human character animation is by using a
patchwork of trimmed NURBS. Trimmed NURBS are used pri-
marily because they are readily available in existing commercial
systems such as Alias-Wavefront and Softimage. They do, how-
ever, suffer from at least two difficulties:

1. Trimming is expensive and prone to numerical error.

2. It is difficult to maintain smoothness, or even approximate
smoothness, at the seams of the patchwork as the model is



(b)

Figure 2: The control mesh for Geri’'s head, created by digitizing a
full-scale model sculpted out of clay.

(© (d)

animated. As a case in point, considerable manual effort was Figure 3: Recursive subdivision of a topologically complicated
required to hide the seams in the face of Woody, a principal mesh: (a) the control mesh:; (b) after one subdivision step; (c) after
character infoy Story two subdivision steps; (d) the limit surface.

Subdivision surfaces have the potential to overcome both of these

problems: they do not require trimming, and smoothness of the = | . ) N .

model is automatically guaranteed, even as the model animates. ~@nimation of clothing, however, poses its own difficulties which we
The use of subdivision in animation systems is not new, but for a @ddress in Section 4. First, it is necessary to express the energy

variety of reasons (several of which we address in this paper), their function of the clothing on subdivision meshes in such a way that

use has not been widespread. In the mid 1980s for instance, Sym the resultlng _m_otlon does not |nappropr|atgly reveal the struc'ture

bolics was possibly the first to use subdivision in their animation of the subdivision control mesh. Second, in order for a physical

system as a means of creating detailed polyhedra. The LightwaveSimulator to make use of subdivision surfaces it must compute col-

3D modeling and animation system from NewTek also uses subdi- liSions very efficiently. While collisions of NURBS surfaces have

vision in a similar fashion. been studied in great detail, little work has been done previously
This paper describes a number of issues that arose when weWith subdivision surfaces. o

added a variant of Catmull-Clark [2] subdivision surfaces to our  Having modeled and animated subdivision surfaces, some

animation and rendering systems, Marionette and RenderMan [17], formidable challenges remain before they can be rendered. The

respectively. The resulting extensions were used heavily in the cre- topological freedom that makes subdivision surfaces so attractive

ation of Geri (Figure 1), a human character in our recently com- for modeling and animation means that they generally do not

pleted short filmGeri's game Specifically, subdivision surfaces ~admit parametrizations suitable for texture mapping. Solid tex-

were used to model the skin of Geri’s head (see Figure 2), his hands,tures [12, 13] and projection textures [9] can address some pro-

and his clothing, including his jacket, pants, shirt, tie, and shoes. ~ duction needs, but Section 5.1 shows that it is possible to go a good
In contrast to previous systems such as those mentioned abovedeal further by using programmable shaders in combination with

that use subdivision as a means to embellish polygonal models, ourSmooth scalar fields defined over the surface.

system uses subdivision as a means to define piecewise smooth sur- The combination of semi-sharp creases for modeling, an appro-

faces. Since our system reasons about the limit surface itself, polyg-Priate and efficient interface to physical simulation for animation,

onal artifacts are never present, no matter how the surface animategnd the availability of scalar fields for shading and rendering have

or how closely it is viewed. made subdivision surfaces an extremely effective tool in our pro-
The use of subdivision surfaces posed new challenges through-duction environment.

out the production process, from modeling and animation to ren-

dering. In modeling, subdivision surfaces free the designer from

worrying about the topological restrictions that haunt NURBS mod- 2 Background

elers, but they simultaneously prevent the use of special tools that

have been developed over the years to add features such as variabla single NURBS surface, like any other parametric surface, is lim-

radius fillets to NURBS models. In Section 3, we describe an ap- ited to representing surfaces which are topologically equivalent to

proach for introducing similar capabilities into subdivision surface a sheet, a cylinder or a torus. This is a fundamental limitation for

models. The basic idea is to generalize the infinitely sharp creasesany surface that imposes a global planar parameterization. A single

of Hoppeet. al.[10] to obtain semi-sharp creases — that is, creases subdivision surface, by contrast, can represent surfaces of arbitrary

whose sharpness can vary from zero (meaning smooth) to infinite. topology. The basic idea is to construct a surface from an arbitrary
Once models have been constructed with subdivision surfaces,polyhedron by repeatedly subdividing each of the faces, as illus-

the problems of animation are generally easier than with corre- trated in Figure 3. If the subdivision is done appropriately, the limit

sponding NURBS surfaces because subdivision surface models aref this subdivision process will be a smooth surface.

seamless, so the surface is guaranteed to remain smooth as the Catmull and Clark [2] introduced one of the first subdivision

model is animated. Using subdivision surfaces for physically-based schemes. Their method begins with an arbitrary polyhedron called



the control mesh. The control mesh, dend#i(see Figure 3(a)),

is subdivided to produce the medit (shown in Figure 3(b)) by
splitting each face into a collection of quadrilateral subfaces. A
face havingn edges is split inta quadrilaterals. The vertices of
M1 are computed using certain weighted averages as detailed be
low. The same subdivision procedure is used agaiméno pro-
duce the mesM2 shown in Figure 3(c). The subdivision surface is
defined to be the limit of the sequence of mestésM?, ... created

by repeated application of the subdivision procedure.

To describe the weighted averages used by Catmull and Clark it
is convenient to observe that each vertestbf! can be associated
with either a face, an edge, or a vertex\bf, these are called face,
edge, and vertex points, respectively. This association is indicated g
in Figure 4 for the situation around a vertékof M°. As indicated
in the figure, we usd’s to denote face point&'s to denote edge
points, andv's to denote vertex points. Face points are positioned Figure 5: Geri’s hand as a piecewise smooth Catmull-Clark surface.
at the centroid of the vertices of the corresponding face. An edge Infinitely sharp creases are used between the skin and the finger
point e'j“, as indicated in Figure 4 is computed as nails.

i i+1 , fitl
gt Ve
(. 4 ?
where subscripts are taken modulo the valence of the central vertex

V0. (The valence of a vertex is the number of edges incident to it.)
Finally, a vertex point/ is computed as

@)

it1_N-2 1oy Lcdin
V= - v'+?;e'j+?;fj ¥

Vertices of valence 4 are called ordinary; others are called extraor-
dinary.

Figure 6: A surface where boundary edges are tagged as sharp and
boundary vertices of valence two are tagged as corners. The control
mesh is yellow and the limit surface is cyan.

Following Hoppeet. al.[10] it is possible to modify the subdivi-
sion rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. This is illustrated in
Figure 5 which shows a close-up shot of Geri's hand. Infinitely
sharp creases were used to separate the skin of the hand from the
Figure 4: The situation around a vertékof valencen. finger nails. Sharp creases can be modeled by marking a subset
of the edges of the control mesh as sharp and then using specially
These averaging rules — also called subdivision rules, masks, ordesigned rules in the neighborhood of sharp edges. Appendix A
stencils — are such that the limit surface can be shown to be tangentdescribes the necessary special rules and when to use them.
plane smooth no matter where the control vertices are placed [14, Again following Hoppeet. al, we deal with boundaries of the
1911 control mesh by tagging the boundary edges as sharp. We have also
Whereas Catmull-Clark subdivision is based on quadrilaterals, found it convenient to tag boundary vertices of valence 2 as corners,
Loop’s surfaces [11] and the Butterfly scheme [6] are based on tri- even though they would normally be treated as crease vertices since
angles. We chose to base our work on Catmull-Clark surfaces for they are incident to two sharp edges. We do this to mimic the behav-
two reasons: ior of endpoint interpolating tensor product uniform cubic B-spline

. . . . surfaces, as illustrated in Figure 6.
1. They strictly generalize uniform tensor product cubic B- 9

splines, making them easier to use in conjunction with exist-
ing in-house and commercial software systems such as Alias- 3 Modeling fillets and blends
Wavefront and Softimage.

2. Quadrilaterals are often better than triangles at capturing the AS mentioned in Section 1 and shown in Figure 5, infinitely sharp
symmetries of natural and man-made objects. Tube-like sur- CT€aS€S are very convenient for representing piecewise-smooth sur-
faces — such as arms, legs, and fingers — for example, canfaces. However, real-world surfaces are never infinitely sharp. The
be modeled much more naturally with quadrilaterals. corner of a tabletop, for instance, is smooth when viewed suffi-

ciently closely. For animation purposes it is often desirable to cap-
ITechnical caveat for the purist: The surface is guaranteed to be smoothture such tightly curved shapes.
except for control vertex positions in a set of measure zero. To this end we have developed a generalization of the Catmull-




Clark scheme to admit semi-sharp creases — that is, creases of conarbitrary number of subdivision steps, followed by another set of
trollable sharpness, a simple example of which is shown in Figure 7. rules that are applied to the limit. Smoothness therefore depends
only on the second set of rules. Hybrid subdivision can be used to
obtain semi-sharp creases by using infinitely sharp rules during the
first few subdivision steps, followed by use of the smooth rules for
subsequent subdivision steps. Intuitively this leads to surfaces that
are sharp at coarse scales, but smooth at finer scales.

Now the details. To set the stage for the general situation where
the sharpness can vary along a crease, we consider two illustrative
special cases.

Case 1: A constant integer sharpnessrease: We subdivide
s times using the infinitely sharp rules, then switch to the smooth
rules. In other words, an edge of sharpnessO is subdivided us-
ing the sharp edge rule. The two subedges created each have sharp-
nesss— 1. A sharpness = 0 edge is considered smooth, and it
stays smooth for remaining subdivisions. In the limit where
the sharp rules are used for all steps, leading to an infinitely sharp
crease. An example of integer sharpness creases is shown in Fig-
ure 7. A more complicated example where two creases of different
sharpnesses intersect is shown in Figure 8.

© (d)

(b)

Figure 7: An example of a semi-sharp crease. The control mesh for
each of these surfaces is the unit cube, drawn in wireframe, where
crease edges are red and smooth edges are yellow. In (a) the crease
sharpness is 0, meaning that all edges are smooth. The sharpnesse d
for (b), (c), (d), and (e) are 1, 2, 3, and infinite, respectively. © (@

One approach to achieve semi-sharp creases is to develop subdi
vision rules whose weights are parametrized by the sharpmfss
the crease. This approach is difficult because it can be quite hard

Figure 8: A pair of crossing semi-sharp creases. The control mesh

for all surfaces is the octahedron drawn in wire frame. Yellow de-

) ; . otes smooth edges, red denotes the edges of the first crease, and

to discover rules that lead to the desired smoothness properties of,55enta denotes the edges of the second crease. In (a) the crease

the limit surfaces. One of the roadblocks is that subdivision rules sharpnesses are both zero; in (b), (c), and (d) the sharpness of the

around a crease break a symmetry possessed by the smooth rulegay crease is 4. The sharpness of the magenta crease in (b), (c), and

typical smooth rules (such as the Catmull-Clark rules) are invariant (d)is 0, 2, and 4, respectively

under cyclic reindexing, meaning that discrete Fourier transforms T ' '

can be used to prove properties for vertices of arbitrary valence (cf.

Zorin [19]). In the absence of this invariance, each valence must Case 2:A constant, but not necessarily integer sharprsesise

currently be considered separately, as was done by Schweitzer [15]main idea here is to interpolate between adjacent integer sharp-

Another difficulty is that such an approach is likely to lead to a nesses. Led ands denote the floor and ceiling af respectively.

zoo of rules depending on the number and configuration of creasesimagine creating two versions of the crease: the first obtained by

through a vertex. For instance, a vertex with two semi-sharp creasessubdividingg. times using the sharp rules, then subdividing one ad-

passing through it would use a different set of rules than a vertex ditional time using the smooth rules. Call the vertices of this first

with just one crease through it. versionvg,\1,.... The second version, the vertices of which we
Our approach is to use a very simple process we call hybrid sub- denote by, VI'1, ..., is created by subdividing times using the

division. The general idea is to use one set of rules for a finite but sharp rules. We take th&-times subdivided semi-sharp crease to



Figure 9: A simple example of a variable sharpness crease. TheFigure 10: A more complex example of variable sharpness creases.

edges of the bottom face of the cubical control mesh are infinitely This model, inspired by an Edouard Lanteri sculpture, contains nu-

sharp. Three edges of the top face form a single variable sharpnessnerous variable sharpness creases to reduce the size of the control

crease with edge sharpnesses set to 2 (the two magenta edges), amdesh. The control mesh for the model made without variable sharp-

4 (the red edge). ness creases required 840 faces; with variable sharpness creases the
face count dropped to 627. Model courtesy of Jason Bickerstaff.

have vertex positionssgSr computed via simple linear interpolation:

v?r = (1=0)\i +oi ©) For physical simulation, the basic properties of a material are gen-
whereo = (s—9g.)/($ —4). Subsequent subdivisions are done us- erally specified by defining an energy functional to represent the
ing the smooth rules. In the case where all creases have the samattraction or resistance of the material to various possible deforma-
non-integer sharpnessthe surface produced by the above process tions. Typically, the energy is either specified as a surface integral
is identical to the one obtained by linearly interpolating between or as a discrete sum of terms which are functions of the positions of
the integer sharpness limit surfaces correspondimgands. Typ- surface samples or control vertices. The first type of specification
ically, however, crease sharpnesses will not all be equal, meaningtypically gives rise to a finite-element approach, while the second
that the limit surface is not a simple blend of integer sharpness sur-is associated more with finite-difference methods.
faces. Finite-element approaches are possible with subdivision sur-

The more general situation where crease sharpness is non-integefaces, and in fact some relevant surface integrals can be computed
and varies along a crease is presented in Appendix B. Figure 9 de-analytically [8]. In general, however, finite-element surface in-
picts a simple example. A more complex use of variable sharpnesstegrals must be estimated through numerical quadrature, and this
is shown in Figure 10. gives rise to a collection of special cases around extraordinary

points. We chose to avoid these special cases by adopting a finite-
. . difference approach, approximating the clothing with a mass-spring
4 Supporting cloth dynamics model [18] in which all the mass is concentrated at the control
. . ) ) ) points.
The use of simulated physics to animate clothing has been widely  away from extraordinary points, Catmull-Clark meshes under
discussed in the literature (cf. [1, 5, 16]). Here, we address the sybdivision become regular quadrilateral grids. This makes them
issues that arise when interfacing a physical simulator to a set of jdeally suited for representing woven fabrics which are also gen-
geometric models constructed out of subdivision surfaces. Itis not erally described locally by a gridded structure. In constructing the
our intent in this section to detail our cloth simulation system fully energy functions for clothing simulation, we use the edges of the
—that would require an entire paper of its own. Our goal is rather to supdivision mesh to correspond with the warp and weft directions
highlight issues related to the use of subdivision surfaces to model of the simulated woven fabrics.
both kinematic and dynamic objects. _ Since most popular fabrics stretch very little along the warp

In Section 4.1 we define the behavior of the cloth material by or weft directions, we introduce relatively strong fixed rest-length
constructing an energy functional on the subdivision control mesh. springs along each edge of the mesh. More precisely, for each edge
If the material properties such as the stiffness of the cloth vary over from p, to p,, we add an energy terkaEs(py, p2) Where
the surface, one or more scalar fields (see Section 5.1) must be de-
fined to modulate the local energy contributions. In Section 4.2 we 1/ |p1—p2
describe an algorithm for rapidly identifying potential collisions in- Es(p1,P2) = 5 (W - > : )
volving the cloth and/or kinematic obstacles. Rapid collision detec- 1o
tion is crucial to achieving acceptable performance. Here,p; and p; are the rest positions of the two vertices, &gk

4.1 Energy functional



the corresponding spring constant. Finally, very short edges in the surface need not give rise to deep
With only fixed-length springs along the mesh edges, the simu- branches in the tree, as they would using a volume-based method.
lated clothing can undergo arbitrary skew without penalty. One way
to prevent the skew is to introduce fixed-length springs along the It is a simple matter to construct a suitable surface-based data
diagonals. The problem with this approach is that strong diagonal structure for a NURBS surface. One method is to subdivide the
springs make the mesh too stiff, and weak diagonal springs allow (s,t) parameter plane recursively into an quadtree. Since each node
the mesh to skew excessively. We chose to address this problemin the quadtree represents a subsquare of the parameter plane, a
by introducing an energy term which is proportional to the product bounding box for the surface restricted to the subsquare can be
of the energies of two diagonal fixed-length springsp{fand p, constructed. An efficient method for constructing the hierarchy of
are vertices along one diagonal of a quadrilateral mesh facpand boxes is to compute bounding boxes for the children using the con-
and p4 are vertices along the other diagonal, the energy is given by vex hull property; parent bounding boxes can then be computed in a
kaEq(p1, P2, P3, Pa) Whereky is a scalar parameter that functions  bottom up fashion by unioning child boxes. Having constructed the

analagously to a spring constant, and where quadtree, we can find all patches withiof a point p as follows.
We start at the root of the quadtree and compare the bounding box
Eq(p1, P2, P3, P4) = Es(p1, p2)Es(Ps, Pa)- (5) of the root node with a box of sizeezentered orp. If there is

no intersection, then there are no patches withi p. If there is
The energyEq(p1, P2, P3, P4) reaches its minimum at zero when  an intersection, then we repeat the test on each of the children and
either of the diagonals of the quadrilateral face are of the original recurse. The recursion terminates at the leaf nodes of the quadtree,
rest length. Thus the material can fold freely along either diago- where bounding boxes of individual subpatches are tested against

nal, while resisting skew to a degree determinedkfqyWe some- the box around.
times use weak springs along the diagonals to keep the material
from wrinkling too much. Subdivision meshes have a natural hierarchy for levels finer than

With the fixed-length springs along the edges and the diagonal the original unsubdivided mesh, but this hierarchy is insufficient
contributions to the energy, the simulated material, unlike real cloth, because even the unsubdivided mesh may have too many faces to
can bend without penalty. To add greater realism to the simulated test exhaustively. Since there is there is no gldbgl plane from
cloth, we introduce an energy term that establishes a resistance tavhich to derive a hierarchy, we instead construct a hierarchy by
bending along virtual threads. Virtual threads are defined as a se-“unsubdividing” or “coarsening” the mesh: We begin by forming
quence of vertices. They follow grid lines in regular regions of the |eaf nodes of the hierarchy, each of which corresponds to a face
mesh, and when a thread passes through an extraordinary vertex obf the subdivision surface control mesh. We then hierarchically
valencen, it continues by exiting along the edge/2|-edges away merge faces level by level until we finish with a single merged face
in the clockwise direction. If1, p2, and p3 are three points along corresponding to the entire subdivision surface.

a virtual thread, the anti-bending component of the energy is given
by kpEp(p1, P2, p3) Where The process of merging faces proceeds as follows. In order to
create the’th level in the hierarchy, we first mark all non-boundary
edges in the — 1st level as candidates for merging. Then until all
candidates at théh level have been exhausted, we pick a candidate
edgee, and remove it from the mesh, thereby creating a “superface”
C(p1, P2, p3) = B @) f* by merging the two face§; and f, that share@. The hierarchy

e Ips—p5|  |P5—p5l is extended by creating a new node to represérand making its

- ) children be the nodes correspondingftoand f,. If f* were to

andpj, p;, and p; are the rest positions of the three points. participate immediately in another merge, the hierarchy could be-

By adjustingks, ky andkp both globally and locally, we have  come poorly balanced. To ensure against that possibility, we next
been able to simulate a reasonably wide variety of cloth behavior. In remove all edges of* from the candidate list. When all the candi-
the production oGeri's game we found that Geri’s jacket looked a  date edges at one level have been exhausted, we begin the next level
great deal more realistic when we modulakgaver the surface of  py marking non-boundary edges as candidates once again. Hierar-

the jacket in order to provide more stiffness on the shoulder pads, onchy construction halts when only a single superface remains in the
the lapels, and in an area under the armpits which is often reinforced yjesh.

in real jackets. Methods for specifying scalar fields Ikgeover a

1
Ep(P1, P2, P3) = 5 *[C(P1, P2, P3) ~C(PL, P, P3)>  (6)

P3 — P2 P2—p1

SUbdiViSion surface are discussed in more detall in Section 5.1. The Coarsening hierarchy is Constructed once in a preprocessing
phase. During each iteration of the simulation, control vertex posi-
4.2 Collisions tions change, so the bounding boxes stored in the hierarchy must be

updated. Updating the boxes is again a bottom up process: the cur-
The simplest approach to detecting collisions in a physical simula- rent control vertex positions are used to update the bounding boxes
tion is to test each geometric element (i.e. point, edge, face) againstat the leaves of the hierarchy. We do this efficiently by storing with
each other geometric element for a possible collision. \Niteo- each leaf in the hierarchy a set of pointers to the vertices used to
metric elements, this would také? time, which is prohibitive for construct its bounding box. Bounding boxes are then unioned up
largeN. To achieve practical running times for large simulations, the hierarchy. A point can be “tested against” a hierarchy to find
the number of possible collisions must be culled as rapidly as possi- all faces withine of the point by starting at the root of the hierar-
ble using some type of spatial data structure. While this can be donechy and recursively testing bounding boxes, just as is done with the
in a variety of different ways, there are two basic strategies: we NURBS quadtree.
can distribute the elements into a two-dimensional surface-based
data structure, or we can distribute them into a three-dimensional We build a coarsening hierarchy for each of the cloth meshes, as
volume-based data structure. Using a two-dimensional structurewell as for each of the kinematic obstacles. To determine collisions
has several advantages if the surface connectivity does not changebetween a cloth mesh and a kinematic obstacle, we test each vertex
First, the hierarchy can be fixed, and need not be regenerated eaclof the cloth mesh against the hierarchy for the obstacle. To deter-
time the geometry is moved. Second, the storage can all be stati-mine collisions between a cloth mesh and itself, we test each vertex
cally allocated. Third, there is never any need to rebalance the tree.of the mesh against the hierarchy for the same mesh.



5 Rendering subdivision surfaces Fortunately, the situation for subdivision surfaces is profoundly
better than for polygonal models. As we prove in Appendix C,

In this section, we introduce the idea of smoothly varying scalar smoothly varying texture coordinates result if the texture coordi-
fields defined over subdivision surfaces and show how they can benates(s,t) assigned to the control vertices are subdivided using
used to apply parametric textures to subdivision surfaces. We thenthe same subdivision rules as used for the geometric coordinates
describe a collection of implementation issues that arose when sub-(x,y, z). (In other words, control point positions and subdivision can
division surfaces and scalar fields were added to RenderMan. be thought of as taking place in a 5-space consisting,9f z, s, t)
coordinates.) This is illustrated in Figure 11(c), where the surface
is treated as a Catmull-Clark surface with infinitely sharp bound-
ary edges. A more complicated example of parametric texture on a

NURBS surfaces are textured using four principal methods: para- subdivision surface is shown in Figure 12.
metric texture mapping, procedural texture, 3D paint [9], and solid
texture [12, 13]. It is straightforward to apply 3D paint and solid
texturing to virtually any type of primitive, so these techniques
can readily be applied to texture subdivision surfaces. It is less
clear, however, how to apply parametric texture mapping, and more
generally, procedural texturing to subdivision surfaces since, unlike

5.1 Texturing using scalar fields

As is generally the case in real productions, we used a combi-
nation of texturing methods to create Geri: the flesh tones on his
head and hands were 3D-painted, solid textures were used to add
fine detail to his skin and jacket, and we used procedural texturing
(described more fully below) for the seams of his jacket.

NURBS, they are not defined parametrically. The texture coordinates andt mentioned above are each in-
With regard to texture mapping, subdivision surfaces are more stances of a scalar field; that is, a scalar-valued function that varies
akin to polygonal models since neither possesses a glslial over the surface. A scalar fielflis defined on the surface by as-

parameter plane. The now-standard method of texture mappingsigning a valuey to each of the control verticas The proof sketch
a polygonal model is to assign texture coordinates to each of thein Appendix C shows that the functiof( p) created through sub-
vertices. If the faces of the polygon consist only of triangles and division (wherep is a point on the limit surface) varies smoothly
quadrilaterals, the texture coordinates can be interpolated acrosswvherever the subdivision surface itself is smooth.

the face of the polygon during scan conversion using linear or bi-

linear interpolation. Faces with more than four sides pose a greater 3 X
challenge. One approach is to pre-process the model by spliting MaPPINg —they can be used more generally as arbitrary parameters

such faces into a collection of triangles and/or quadrilaterals, us- {© Procedural shaders. An example of this occurs on Geri's jacket.
ing some averaging scheme to invent texture coordinates at newaA s_calar field is defined on the jacket that takes on large values for
introduced vertices. One difficulty with this approach is that the -POINts on the surface near a seam, and small values elsewhere. The
texture coordinates are not differentiable across edges of the origi-Procedural jacket shader uses the value of the this field to add the
nal or pre-processed mesh. As illustrated in Figures 11(a) and (b),apparent seams to the jacket. We use other scalar fields to darken

these discontinuities can appear as visual artifacts in the texture, G€M'S nostril and ear cavities, and to modulate various physical
especially as the model is animated. parameters of the cloth in the cloth simulator.

Scalar fields can be used for more than just parametric texture

We assign scalar field values to the vertices of the control mesh
in a variety of ways, including direct manual assignment. In some
cases, we find it convenient to specify the value of the field directly
at a small number of control points, and then determine the rest by
interpolation using Laplacian smoothing. In other cases, we spec-
ify the scalar field values by painting an intensity map on one or
more rendered images of the surface. We then use a least squares
solver to determine the field values that best reproduce the painted
intensities.

(b)

Figure 12: Gridded textures mapped onto a bandanna modeled us-

(©) (d) ing two subdivision surfaces. One surface is used for the knot, the
other for the two flaps. In (a) texture coordinates are assigned uni-

Figure 11: (a) A texture mapped regular pentagon comprised of formly on the right flap and nonuniformly using smoothing on the

5 triangles; (b) the pentagonal model with its vertices moved; (€) left to reduce distortion. In (b) smoothing is used on both sides and

A subdivision surface whose control mesh is the same 5 triangles g more realistic texture is applied.

in (a), and where boundary edges are marked as creases; (d) the

subdivision surface with its vertices positioned as in (b).



5.2 Implementation issues we have removed two of the important obstacles to the use of subdi-
. . . ) vision surfaces in production. By developing an efficient data struc-
We have implemented subdivision surfaces, specifically semi-sharpyre for culling collisions with subdivisions, we have made subdi-
Catmull-Clark surfaces, as a new geometric primitive in Render- \isjon surfaces well suited to physical simulation. By developing a
Man. . . cloth energy function that takes advantage of Catmull-Clark mesh
Our renderer, built upon the REYES architecture [4], demands gty cture, we have made subdivision surfaces the surfaces of choice
that all primitives be convertible into grids of micropolygons (i.e.  for qur clothing simulations. Finally, by introducing Catmull-Clark
half-pixel wide quadrilaterals). Consequently, each type of prim- gpgivision surfaces into our RenderMan implementation, we have

itive must be capable of splitting itself into a collection of sub-  shown that subdivision surfaces are capable of meeting the demands
patches, bounding itself (for culling and bucketing purposes), and of high-end rendering.

dicing itself into a grid of micropolygons.
Each face of a Catmull-Clark control mesh can be associated
with a patch on the surface, so the first step in rendering a Catmull- A Infinitely Sharp Creases
Clark surface is to split it in into a collection of individual patches.
The control mesh for each patch consists of a face of the control Hoppe et. al. [10] introduced infinitely sharp features such as
mesh together with neighboring faces and their vertices. To bound creases and corners into Loop’s surfaces by modifying the subdi-
each patch, we use the knowledge that a Catmull-Clark surface liesvision rules in the neighborhood of a sharp feature. The same can
within the convex hull of its control mesh. We therefore take the be done for Catmull-Clark surfaces, as we now describe.
bounding box of the mesh points to be the bounding box for the  Face points are always positioned at face centroids, independent
patch. Once bounded, the primitive is tested to determine if it is of which edges are tagged as sharp. Referring to Figure 4, suppose
diceable; it is not diceable if dicing would produce a grid with too the edgeV' € has been tagged as sharp. The corresponding edge
many micropolygons or a wide range of micropolygon sizes. If pointis placed at the edge midpoint:
the patch is not diceable, then we split each patch by performing a
subdivision step to create four new subpatch primitives. If the patch i1 v+ ei]-
is diceable, it is repeatedly subdivided until it generates a grid with e'j+ = (8)
the required number of micropolygons. Finally, we move each of
the grid points to its limit position using the method described in The rule to use when placing vertex points depends on the number
Halsteacket. al.[8]. of sharp edges incident at the vertex. A vertex with one sharp edge
An important property of Catmull-Clark surfaces is that they is called a dart and is placed using the smooth vertex rule from
give rise to bicubic B-splines patches for all faces except those in Equation 2. A vertex! with two incident sharp edges is called a
the neighborhood of extraordinary points or sharp features. There-crease vertex. If these sharp edge@vbandv‘ €., the vertex point
fore, at each level of splitting, it is often possible to identify one or i+1 i positioned using the crease vertex rule:
more subpatches as B-spline patches. As splitting proceeds, more
of the surface can be covered with B-spline patches. Exploiting ) é +o6v +eL
this fact has three advantages. First, the fixed4size of a B- vti= X (9)
spline patch allows for efficiency in memory usage because there 8
is no need to store information about vertex connectivity. Second, The sharp edge and crease vertex rules are such that an isolated
the fact that a B-spline patch, unlike a Catmull-Clark patch, can be crease converges to a uniform cubic B-spline curve lying on the
split independently in either parametric direction makes it possible |imit surface. A vertex/ with three or more incident sharp edges
to reduce the total amount of splitting. Third, efficient and well s called a corner; the corresonding vertex point is positioned using
understood forward differencing algorithms are available to dice B- the corner rule
spline patches [7]. vl (10)
We quickly learned that an advantage of semi-sharp creases over . . o
infinitely sharp creases is that the former gives smoothly varying Meaning that comers do not move during subdivision. ~ See
normals across the crease, while the latter does not. This impliesHOPP€et. al.[10] and Schweitzer [15] for a more complete dis-
that if the surface is displaced in the normal direction in a creased cussion and rationale for these choices.

area, it will tear at an infinitely sharp crease but not at a semi-sharp . Hoppeet. al. found it necessary in proving smoothness proper-
one. ties of the limit surfaces in their Loop-based scheme to make further

distinctions between so-called regular and irregular vertices, and
they introduced additional rules to subdivide them. It may be nec-
6 Conclusion essary to do something similar to prove smoothness of our Catmull-
Clark based method, but empirically we have noticed no anamolies

Our experience using subdivision surfaces in production has beenUSing the simple strategy above.
extremely positive. The use of subdivision surfaces allows our
model builders to arrange control points in a way that is natural
to capture geometric features of the model (see Figure 2), without
concern for maintaining a regular gridded structure as required by
NURBS models. This freedom has two principal consequences.
First, it dramatically reduces the time needed to plan and build an
initial model. Second, and perhaps more importantly, it allows the
initial model to be refined locally. Local refinement is not possi-
ble with a NURBS surface, since an entire control point row, or
column, or both must be added to preserve the gridded structure.
Additionally, extreme care must be taken either to hide the seams
between NURBS patches, or to constrain control points near the
seam to create at least the illusion of smoothness.

By developing semi-sharp creases and scalar fields for shading, 2In our implementation we do not allow two creases to share an edge.

B General semi-sharp creases

Here we consider the general case where a crease sharpness is al-
lowed to be non-integer, and to vary along the crease. The follow-
ing procedure is relatively simple and strictly generalizes the two
special cases discussed in Section 3.

We specify a crease by a sequence of edges, ... in the con-
trol mesh, where each edgehas an associated sharpnegss We
associate a sharpness per edge rather than one per vertex since there
is no single sharpness that can be assigned to a vertex where two or
more creases cross.




exists a parametrizatiof(s,t) for the surface in the neighborhood

_O----- ef ----0, of psuch tha§(0,0) = p, and such that the functidis,t) is differ-
e - ~ e entiable and the derivative varies continuously in the neighborhood
a_ - W e TN C of (0,0).
-7 RN - The characteristic map, introduced by Reif [14] and extended by
o~ ~0 Zorin [19], provides such a parametrization: the characteristic map

allows a subdivision surfac8in three space in the neighborhood
of a pointp on the surface to be written as

S(Svt) = (X(S,t),y(S,t),Z(S,t))

Figure 13: Subedge labeling.
12)

During subdivision, face points are always placed at face cen- WhereS(0,0) = p and where each of(s;t), y(s,t), andz(s;t) is
troids. The rules used when placing edge and vertex points areonce differentiable if the surface is smoothpatSince scalar fields

determined by examining edge sharpnesses as follows:

are subdivided according to the same rules ag,fyeandz coordi-
nates of the control points, the functié(s,t) must also be smooth.
An edge point corresponding to a smooth edge éis+ 0) is

computed using the smooth edge rule (Equation 1).
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« A vertex point corresponding to a vertex adjacent to zero or References

one sharp edges is computed using the smooth vertex rule
(Equation 2).

¢ A vertex point corresponding to a vertexadjacent to three
or more sharp edge is computed using the corner rule (Equa-
tion 10).

e A vertex point corresponding to a vertexadjacent to two
sharp edges is computed using the crease vertex rule (Equa-
tion 9) if v.s > 1, or a linear blend between the crease vertex
and corner masks ¥.s < 1, wherev.s is the average of the
incidence edge sharpnesses.

(1]

(2]

When a crease edge is subdivided, the sharpnesses of the result-[3]

ing subedges is determined using Chaikin’s curve subdivision algo-
rithm [3]. Specifically, ifes, &, &; denote three adjacent edges of
a crease, then the subedggs andey. as shown in Figure 13 have
sharpnesses

€hS = max(ea'stlgebsfl,o)
€S = max(seo's:ecs—l,o)

A 1 is subtracted after performing Chaikin’s averaging to ac-
count for the fact that the subedgesf &,c) are at a finer level than
their parent edgese4, ey,e:). A maximum with zero is taken to
keep the sharpnesses non-negative. If eitqenr g, is infinitely
sharp, thereyy, is; if either e, or e is infinitely sharp, thereye
is. This relatively simple procedure generalizes cases 1 and 2 de-
scribed in Section 3. Examples are shown in Figures 9 and 10.

C Smoothness of scalar fields

In this appendix we wish to sketch a proof that a scalar ffeld
smooth as a function on a subdivision surface wherever the surface
itself is smooth. To say that a function on a smooth surface
smooth to first order at a poimt on the surface is to say that there
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