Greed: Shortest Path

Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne

Directed Graph

Directed graph: G=(V,E).
. V =set of vertices or nodes.

EO VxV =setof ed
. n=|V[,m=|E|

ges or arcs.

Directed path: s-2-3-5-t.

- simple

Directed cycle: 5-4-

3-5.

Networks
Network Nodes Arcs Flow
. telephone exchanges, | cables, fiber optics, voice, video,
communication . .
computers, satellites | microwave relays packets
circuits gates, registers, wires current

processors

mechanical joints rods, beams, springs | heat, energy

reservoirs, pumping

hydraulic T pipelines fluid, oil
financial stocks, currency transactions money
. airports, rail yards, highways, railbeds, frelght,
transportation . . . vehicles,
street intersections airway routes
passengers

Shortest Path Network

Shortest path network: (V,E, s, t,c).

Directed graph (V, E).

. Sources O V,sinktO V.

. Arc costs c(v, w).

. Cost of path = sum of arc costs in path.

Cost of paths-2-3-5-t

= 9+23+2+16
= 48.

.
O ” =
9 /
18
1) F4
30.
11
15 K
6
20 16
7 44

Shortest Path

Shortest path problem. (CLR 25.1-25.2)
. Shortest path network (V, E, s, t, ¢).
. Find shortest directed path from s to t.

Assumptions.
. Network contains directed path from s to every other node.

. Network does not contain a negative cost cycle. /@
Application. T

-6
. . . -4
. Online directions.
T—>

Shortest Path: Existence

Existence. If some path from s to v contains a negative cost cycle,
there does not exist a shortest path. Otherwise, there exists a shortest
s-v that is simple.

O If negative cycle, can produce arbitrarily negative path by
traversing cycle enough times.

c(C)<0

0O If no negative cycle, can remove cycles without increasing cost.

Shortest Path: Properties

Optimal substructure property. All sub-paths of shortest paths are
shortest paths.

. Let P, be x-y sub-path of shortest s-v path P.
. Let P,be any x-y path.

. ¢(P;) = c(P,), otherwise P
not shortest s-v path.

Triangle inequality.
. Let d*(v, w) be the length of the shortest path from v to w.
. Then, d*(v, w) £ d*(v, x) + d*(x, w)

Dijkstra’s Algorithm

Upon termination.
. T(v) = distance of shortest s-v path.

. pred(v) gives shortest path.
Dijkstra’s Algorithm

for each v OV
V) <
pred(v) « nil
ms) <« 0
S -0
init(Q
for each v OV
insert(v, Q
while (Q # @
v = delete-mn(Q
S « SO {v}
for each ws.t (v,w) OE
if m(w > mv) + c(v,w

decrease-key mw « m(v) + c(v,w
pred(w) « v

Dijkstra’s Algorithm: Proof of Correctness

Invariant. For each vertex v O S, 1(v) = d*(s, V).)
. Proof by induction on [S]. P

. Basecase: |S|=0is trivial.

. Induction step:
- suppose Dijkstra’s algorithm adds vertex vto S
- 1v) is the length of the some path fromstov

- if (v) is not the length of the shortest s-v path, then let P* be a
shortest s-v path

- P*must use an edge that leaves S, say (x, y)
—then m(v) > d*(s, v) assumption
d*(s, x) +d(x, y) + d*(y, v) optimal substructure

[\

d*(s, x) +d(x, y) nonnegative lengths
= 1(x) + d(X,y) inductive hypothesis
> 11y) algorithm

so Dijkstra’s algorithm would have selected y instead of v

Shortest Path Extensions

Variants of shortest path:
. Undirected graph.
- O(m + n) using Thorup’s algorithm
. Negative weights but no negative cycles.
- O(mn) using Bellman-Ford
. Unit weights.
- O(m + n) using breadth first search
. Integer weights between 0 and constant C.
. DAGs.
- O(m + n) using topological sort
. All-pairs.
- O(n?d) using Floyd-Warshall
- O(mn +nlog log n) using Pettie’'s algorithm

Priority Queues and Heaps (CLR 20, 21)

Heaps
Operation Linked List Binary Binomial Fibonacci * Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
is-empty 1 1 1 1 1

n 0

n (logn) + m(1) =
O(m + n log n)

Dijkstra
1 make-heap

n (log n) + m(log n) =
O(m log n)

n insert
n delete-min
m decrease-key

