Polynomial-Time Reductions

Princeton University « COS 423 « Theory of Algorithms « Spring 2001 « Kevin Wayne

Contents

Contents.
Polynomial-time reductions.
Reduction from special case to general case.
- COMPOSITE reduces to FACTOR
- VERTEX-COVER reduces to SET-COVER
Reduction by simple equivalence.
- PRIMALITY reduces to COMPOSITE, and vice versa
- VERTEX COVER reduces to CLIQUE, and vice versa
Reduction from general case to special case.
- SAT reduces to 3-SAT
- 3-COLOR reduces to PLANAR-3-COLOR
Reduction by encoding with gadgets.
- 3-CNF-SAT reduces to CLIQUE
- 3-CNF-SAT reduces to HAM-CYCLE
- 3-CNF-SAT reduces to 3-COLOR

Polynomial-Time Reduction

Intuitively, problem X reduces to problem Y if:
. Any instance of X can be "rephrased" as an instance of VY.

Formally, problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:

Polynomial number of standard computational steps, plus
Polynomial number of calls to oracle that solves problem Y.

- computational model supplemented by special piece of
hardware that solves instances of Y in a single step

Remarks.

. We pay for time to write down instances sent to black box 0O
instances of Y are of polynomial size.

Note: Cook-Turing reducibility (not Karp or many-to-one).
Notation: X<, Y (or more precisely x g,’; Y).

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X<p Y and Y can be solved in polynomial-time,
then X can be solved in polynomial time.

Establish intractability. If X<p Y and X cannot be solved in
polynomial-time, then X cannot be solved in polynomial time.

Anti-symmetry. If X<pYand Y < X, we use notation X =Y.

Transitivity. If X<pYandY <, Z then X<, Z.
Proof idea: compose the two algorithms.
. Given an oracle for Z, can solve instance of X:
- run the algorithm for X using a oracle for Y

- each time oracle for Y is called, simulate it in a polynomial
number of steps by using algorithm for Y, plus oracle calls to Z

Polynomial-Time Reduction

Basic strategies.
. Reduction by simple equivalence.

Compositeness and Primality

COMPOSITE: Given the decimal representation of an integer x, does x
have a nontrivial factor?

PRIME: Given the decimal representation of an integer x, is x prime?

Claim. COMPOSITE =, PRIME.
. COMPOSITE < , PRIME.
. PRIME < ; COMPOSITE.

I F (PRIME(x) = TRUE) | F (COMPOSI TE(x) = TRUE)
RETURN FALSE RETURN FALSE

ELSE ELSE
RETURN TRUE RETURN TRUE

Vertex Cover

VERTEX COVER: Given an undirected graph G = (V, E) and an integer
k, is there a subset of vertices S 0 V such that S| <k, and if (v, w) OE
then either v 0 S, w O S or both.

Ex.

. Is there a vertex cover of size 4?

YES.

Vertex Cover

VERTEX COVER: Given an undirected graph G = (V, E) and an integer

k, is there a subset of vertices S 0 V such that S| <k, and if (v, w) OE
then either v 0 S, w O S or both.

Ex.

. Is there a vertex cover of size 4?

YES. \<
. Is there a vertex cover of size 3? /
l ®

10,

©

NO.

®

@

Clique

CLIQUE: Given N people and their pairwise relationships. Is there a
group of S people such that every pair in the group knows each other.

Ex.

. People: a,b,c,d,e,... k.
. Friendships: (a, e), (a,f), (a,9), ..., (h, k).
. Clique size: S=4.

YES Instance

Friendship Graph

Vertex Cover and Clique

Claim. VERTEX COVER =, CLIQUE.
. Given an undirected graph G = (V, E), its complement is G’ = (V, E’),
where E'={ (v, w) : (v, w) O E}.
. Ghas aclique of size k if and only if G’ has a vertex cover of size
[V] - k.

N
S

G G’
Clique ={u, v, x, y} Vertex cover = {w, z}

N
=

Vertex Cover and Clique

Claim. VERTEX COVER =, CLIQUE.
. Given an undirected graph G = (V, E), its complement is G’ = (V, E'),
where E'={ (v, w) : (v, w) O E}.
. Ghas aclique of size k if and only if G’ has a vertex cover of size

[V] - k.
Proof. O
. Suppose G has a clique S with |S| = k. @
. Consider S'=V —S. &
. |S]=1|V]-k.

. Toshow S'is a cover, consider any
edge (v, w) OE"
—then (v,w)OE
- atleastoneof vorwisnotinS
(since S forms aclique)
—at least oneof vorwisin S’
- hence (v, w) is covered by S’

Vertex Cover and Clique

Claim. VERTEX COVER =, CLIQUE.
. Given an undirected graph G = (V, E), its complement is G’ = (V, E"),
where E' ={ (v, w) : (v, w) O E}.
. Ghas aclique of size k if and only if G’ has a vertex cover of size
[V] - k.

Proof. O

. Suppose G’ has a cover S’ with |S’| = |V] - k.
. ConsiderS=V-S.

. Clearly S| = k.

. Toshow S is a clique, consider some
edge (v, w) OE"
—if (v, w) O E', then either v O S’,w O S’, or both

- by contrapositive, ifvO S'andw O S,
< . ®

then (v,w) O E
-thus Sis acliquein G

Polynomial-Time Reduction
Basic strategies.

. Reduction from special case to general case.

Compositeness Reduces to Factoring

COMPOSITE: Given an integer x, does x have a nontrivial factor?

FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y?

Claim. COMPOSITE <, FACTOR.

Proof. Given an oracle for FACTOR, we solve COMPOSITE.
. Is 350 composite?

. Does 350 have a nontrivial factor
less than 3507

| F (FACTOR(X, X) = TRUE)
RETURN TRUE

ELSE
RETURN FALSE

Primality Testing and Factoring

We established:
. PRIME < ; COMPOSITE < ;, FACTOR.

Natural question:
. Does FACTOR < PRIME ?
. Consensus opinion = NO.

State-of-the-art.
. PRIME in randomized P and conjectured to be in P.
. FACTOR not believed to be in P.

RSA cryptosystem.

. Based on dichotomy between two problems.

. To use, must generate large primes efficiently.
. Can break with efficient factoring algorithm.

Set Cover

SET COVER: Given aset U of elements, a collection S, S,, ..., S, of
subsets of U, and an integer k, does there exist a collection of at most
k of these sets whose union is equal of U?

Sample application.
. navailable pieces of software.
. Set U of n capabilities that we would like our system to have.
. Theith piece of software provides the set S, 0 U of capabilities.

. Goal: achieve all n capabilities using small number of pieces of
software.

Ex. U={1,2,3,...,12}, k=3.
. 5,={1,2,3,4,5,6} S,={5,6,8,9}
. S3={1,4,7, 10} S,={2,5,7,8, 11}
. S5={3,6,9,12} Sg=1{10, 11}

YES: S;, S, Ss.

Vertex Cover Reduces to Set Cover

SET COVER: Given aset U of elements, a collection S;, S,, ..., S, of
subsets of U, and an integer k, does there exist a collection of at most
k of these sets whose union is equal to U?

VERTEX COVER: Given an undirected graph G = (V, E) and an integer
k, is there a subset of vertices S 0 V such that S| <k, and if (v, w) OE
then eitherv O S, w O S or both.

Claim. VERTEX-COVER < SET-COVER.

Proof. Given black box that solves instances of SET-COVER.

U={1,2,3,4,56,7}

" 2

(eﬁ \tQ S={} S={L267
€, es

Vertex Cover @ (‘D/

Set Cover

Vertex Cover Reduces to Set Cover

SET COVER: Given aset U of elements, a collection S;, S,, ..., S, of
subsets of U, and an integer k, does there exist a collection of at most
k of these sets whose union is equal to U?

VERTEX COVER: Given an undirected graph G = (V, E) and an integer
k, is there a subset of vertices S 0 V such that [S| <k, and if (v, w) OE
then eitherv O S, w O S or both.

Claim. VERTEX-COVER < SET-COVER.

Proof. Given black box that solves instances of SET-COVER.
Let G = (V, E), k be an instance of VERTEX-COVER.
. Create SET-COVER instance:
-k=k,U=E,S,={e JE: eincidenttov}
. Set-cover of size at most k if and only if vertex cover of size at
most k.

Polynomial-Time Reduction

Basic strategies.

Reduction from general case to special case.

Factoring and Finding Factors

FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y?

FACTORIZE: Given an integer X, find its prime factorization.

Claim. FACTORIZE =, FACTOR.
Proof: FACTOR <, FACTORIZE.
Reduction from special case to general case.

FACTOR (x)

S = prime factorization \’::> S FACTORI ZE(x)

is of polynomial size d « smallest factor in S

IF (d <vy)
RETURN TRUE
ELSE
RETURN FALSE

Factoring and Finding Factors Satisfiability

FACTOR: Given two integers x and y, does x have a nontrivial factor Literal: A Boolean variable or its negation. Xj or X;
less than y? _
FACTORIZE: Given an integer X, find its prime factorization. Clause: A disjunction of literals. Cj =x3 O x O X3

Claim. FACTORIZE = . FACTOR. FACTORIZE(X) Conjunctive normal form: A Boolean formula
P B=01DCZDC3|:|C4

Proof: FACTORIZE < » FACTOR. that is the conjunction of clauses.

Reduction from general
case to special case.

| F (FACTOR(x, x) = NO
S < sO{x}
RETURN CNF-SAT: Given propositional formula in conjunctive normal form,

does it have a satisfying truth assignment?

left =1, right = x

VWHI LE (right > left + 1)

find smallest factor # md = (left +right) / 2 (%, O %, Oxg) O(x, 0% Oxg) O(% 0x5) 0(x 0%, O x3)
via binary search I'F (FACTOR(x, mid) = TRUE)
right = nmd YES i
ELSE X _tlrnusetance
= i 1=
S = global variable | eft md X, =true
i ¢ of fact S - s0O {left} -
containing set of factors FACTOR ZE(x / |eft) x, = false

SAT Reduces to 3-SAT SAT Reduces to 3-SAT

3-CNF-SAT: CNF-SAT, where each clause has 3 distinct literals. 3-CNF-SAT: CNF-SAT, where each clause has 3 distinct literals.
Claim. CNF-SAT < 3-CNF-SAT. Claim. CNF-SAT <, 3-CNF-SAT.
. Case 3: clause Cjcontains exactly 3 terms. . Case 4: clause Cjcontains ¢ = 4 terms.
. Case 2: clause C;contains exactly 2 terms. - introduce ¢ - 1 extra Boolean variables
-add 1 new term, and replace C; with 2 clauses - replace C; with / clauses
Ci=x30x; 0 Cyq = x3 O x; Oy Ci=x0x30x,0x50x60x9 0 Cjp = x; O x; O yg
C}2:735X7Dy Cyjzzyilmxizmh
Cis = ¥2 O x4 O ys
. Case 1: clause C;contains exactly 1 term. C:j4 - Vs O x5 U yy
- add 4 new terms, and replace C;with 4 clauses C!‘s = Vs] Xe U Ys
Ci=x3 0 Cp = x3 0y 0Oy, Co = ¥s B % B %
C,j2 = x3 0y, Oy,
C’j3 = x3 0y Oy,
Cia = X3 0 1 0y,

SAT Reduces to 3-SAT

. Case 4: clause Cjcontains ¢ = 4terms.

C; =tjOt;,0tja0--0t;, O Cjy th Oty Oy

Cj yi O tp Oy

k=4 Cis y, O tjz O ys

\’{C’j ys O tjy O y,4

Cjs Ya | O tjs O ys

Claim. CNF-SAT instance is satisfiable c, Vod O t;, Ot
if and only if 3-CNF-SAT instance is. J Jt J

Proof. [1 Suppose SAT instance is satisfiable.

\ set TRUE

- If SAT assignment sets t; = 1, 3-SAT assignment sets:

-Yym=1forallm<k; y,=0forallmz=k

SAT Reduces to 3-SAT

. Case 2: clause Cjcontains ¢ = 4terms.

Cj =tjOt;p0ta0-0t;, O Cyp =ty Oty Oy

Chp =y1 0Ot Oy

C’j3 =y, DOt Oy,

C’j4 = y3 DOty Oy,

Cis = ya O tjs O ys

Claim. CNF-SAT instance is satisfiable C, =y 0¢t, Ot
if and only if 3-CNF-SAT instance is. J ‘ Jt J

Proof.] Suppose 3-SAT instance is satisfiable.
. If 3-SAT assignment sets t; = 1, SAT assignment sets t;, = 1.
. Consider clause C;. We claim t; = 1 for some k.

- each of /- 1 new Boolean variables y; can only make one of £
new clauses true

- the remaining clause must be satisfied by an original term t;,

Polynomial-Time Reduction

Basic strategies.

. Reduction by encoding with gadgets.

Clique

CLIQUE: Given N people and their pairwise relationships. Is there a
group of C people such that every pair in the group knows each other.

Ex.

. People: a,b,c,d,e,... k.
. Friendships: (a, e), (a, f), (a, 9), ..., (h, k).
. Clique size: C=4.

YES Instance

Friendship Graph

Satisfiability Reduces to Clique

Claim. CNF-SAT <, CLIQUE.

. Given instance of CNF-SAT, create a person for each literal in each
clause.

first clause

. g
®® O

X+y+2)(x+y +2)(y+2z) (X' +y +2)
C =4 clauses

® OO

ONO,

® O

Satisfiability Reduces to Clique

Claim. CNF-SAT <, CLIQUE.
. Given instance of CNF-SAT, create a person for each literal in each
clause.
. Two people know each other except if:
- they come from the same clause
-they represent a literal and its negation

X+y+2)(x+y +2)(y+2z) (X' +y +2)
C =4 clauses

Satisfiability Reduces to Clique

Claim. CNF-SAT <, CLIQUE.
. Given instance of CNF-SAT, create a person for each literal in each
clause.
. Two people know each other except if:
- they come from the same clause
-they represent a literal and its negation
. Clique of size C 0 satisfiable assignment.
- set variable in clique to true
- (X,Y, z) = (true, true, false)

X+y+2)(x+y +2)(y+z) (X' +y +2)
C =4 clauses

Satisfiability Reduces to Clique

Claim. CNF-SAT <, CLIQUE.
. Given instance of CNF-SAT, create a person for each literal in each
clause.
. Two people know each other except if:
- they come from the same clause
-they represent a literal and its negation
. Clique of size C 0 satisfiable assignment.
. Satisfiable assignment O clique of size C.
- (X,Y, z) = (true, true, false)

- choose one true literal from each
clause

X +y+2)(x+y +2)(y+2z2) (X' +y +2)
C =4 clauses

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT CLIQUE

il
Dick Karp (1972)

3-COLOR DIR-HAM-CYCLE IND-SET VERTEX-COVER

PLANAR-3- HAM-CYCLE SET-COVER SUBSET-SUM
TSP PARTITION INTEGER
‘/l PROGRAMMING
SCHEDULE KNAPSACK

Problem Genres

Basic genres.

. Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Hamiltonian Cycle

HAMILTONIAN-CYCLE: given an undirected graph G = (V, E), does
there exists a simple cycle C that contains every vertex in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAMILTONIAN-CYCLE: given an undirected graph G = (V, E), does
there exists a simple cycle C that contains every vertex in V.

NO: bipartite graph with odd number of nodes.

Finding a Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle C that contains every vertex in V.

FIND-HAM-CYCLE: given an undirected graph G = (V, E), output a
Hamiltonian cycle if one exists, otherwise output any cycle.

Claim. HAM-CYLCE = FIND-HAM-CYCLE.

HAM-CYCLE (G)

C < FIND HAM CYCLE(GQ
IF (Cis Hanmiltonian)
RETURN TRUE
ELSE
RETURN FALSE

Proof. <

Finding a Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle C that contains every vertex in V.

FIND-HAM-CYCLE: given an undirected graph G = (V, E), output a
Hamiltonian cycle if one exists, otherwise output any cycle.

Claim. HAM-CYLCE =, FIND-HAM-CYCLE.

FIND-HAM-CYCLE (G)

| F (HAM CYCLE(G) = FALSE)
RETURN FALSE

Proof. 2

A - E
F EACH e O E
| F (HAM CYCLE(V, A - {e}) = TRUE)
A« A- {e}

RETURN uni que cycle remaining in G

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a directed graph G = (V, E), does there exists
a simple directed cycle C that contains every vertex in V.

Claim. DIR-HAM-CYCLE <, HAM-CYCLE.

Proof.
. Given adirected graph G = (V, E), construct an undirected graph G’
with 3n vertices.

@

® O
© ©

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle if and only if G’ does.

Proof. O
. Suppose G has a directed Hamiltonian cycle C.
. Then G’ has an undirected Hamiltonian cycle.

Proof. O

. Suppose G’ has an undirected Hamiltonian cycle C'.

. C’ ' must visit nodes in G’ using one of following two orders:
...,G,R/B,GR,B,GR,B,...
...,R,G,B,R,G,B,R,G, B, ...

Blue nodes in C' make up directed Hamiltonian cycle Cin G, or
reverse of one.

40

3-SAT Reduces to Directed Hamiltonian Cycle
Claim. 3-CNF-SAT < DIR-HAM-CYCLE.

. Why not reduce from some other problem?
Need to find another problem that is sufficiently close.
(could reduce from VERTEX-COVER)
If don’t succeed, start from 3-CNF-SAT since its
combinatorial structure is very basic.
Downside: reduction will require certain level of
complexity.

41

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables x; and k clauses C;.
. Construct G to have 2" Hamiltonian cycles.
. Intuition: traverse path i from left to right - set variable x;= 1.

42

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables x; and k clauses C;.
. Add node and 6 edges for each clause.

q=X1V72VX3

43

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables x; and k clauses C;.

. Add node and 6 edges for each clause.

C =x1V X V xg

X1
X3
X3

a4

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-CNF-SAT instance is satisfiable if and only if corresponding
graph G has a Hamiltonian cycle.

Proof. O
. Suppose 3-SAT instance has satisfying assignment x*.
. Then, define Hamiltonian cycle in G as follows:

- if x* = 1, traverse path P; from left to right

- if x* =0, traverse path P; from right to left

- for each clause Cj , there will be at least one path P;in which we
are going in "correct” direction to splice node C;jinto tour

45

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-CNF-SAT instance is satisfiable if and only if corresponding
graph G has a Hamiltonian cycle.

Proof. O
. Suppose G has a Hamiltonian cycle C.
- If Centers clause node C;, it must depart on mate edge.

- thus, nodes immediately before and after C; are connected by an
edgeein G

-removing C;from cycle, and replacing it with edge e yields
Hamiltonian cycle on G - {C; }

. Continuing in this way, we are left with Hamiltonian cycle C’ in
G-{C;,C,, ..., C}.

. Set x* = 1if path P; if traversed from left to right, and 0 otherwise.

. Since C visits each clause node Cj , at least one of the paths is
traversed in "correct" direction, and each clause is satisfied.

46

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT CLIQUE
1l it

Dick Karp (1972)

3-COLOR DIR-HAM-CYCLE IND-SET VERTEX-COVER

PLANAR-3- HAM-CYCLE SET-COVER SUBSET-SUM
TSP PARTITION INTEGER

PROGRAMMING

— |

SCHEDULE KNAPSACK

a7

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal
to abandon hope of finding an efficient algorithm.

%

*] can’t find an efficient algorithm, I guess I'm just too dumb.”

48

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal
to abandon hope of finding an efficient algorithm.

I can’t find an efficient algorithm, because no such algorithm is possible!”’

49

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal
to abandon hope of finding an efficient algorithm.

ML LL L L

j'
ij !E
| ——— -

S

=

*1 ean’l find an efficient nlgorithm, bui neither can all these famous people,™

Problem Genres

Basic genres.

. Partitioning problems: 3-COLOR.

3-Colorability

3-COLOR: Given an undirected graph does there exists a way to color
the nodes R, G, and B such no adjacent nodes have the same color?

YES instance

3-Colorability

Claim. 3-CNF-SAT < 3-COLOR.
Proof: Given 3-SAT instance with n variables x; and k clauses C;.
. Create instance of 3-COLOR G = (V, E) as follows.
. Step 1:
- create triangle R (false), G (true), or B
- create nodes for each literal and connect to B
Each literal colored R or G.
- create nodes for each literal, and connect literal to its negation
Each literal colored opposite of its negation.

3-Colorability

Claim. 3-CNF-SAT < 3-COLOR.
Proof: Given 3-SAT instance with n variables x; and k clauses C;.
. Step 2:
- for each clause, add "gadget" of 6 new nodes and 13 new edges

3-Colorability

Claim. 3-CNF-SAT < 3-COLOR.
Proof: Given 3-SAT instance with n variables x; and k clauses C;.
. Step 2:
- for each clause, add "gadget" of 6 new nodes and 13 new edges
- if 3-colorable, top row must have at least one green (true) node
Otherwise, middle row all blue.

Bottom row alternates between green and red [
contradiction.

3-Colorability

Claim. 3-CNF-SAT < 3-COLOR.
Proof: Given 3-SAT instance with n variables x; and k clauses C;.
. Step 2:
- for each clause, add "gadget" of 6 new nodes and 13 new edges
- if top row has green (true) node, then 3-colorable
Color vertex below green node red, and one below that blue.
Color remaining middle row nodes blue.
Color remaining bottom nodes red or green, as forced.

Planar 3-Colorability

PLANAR-3-COLOR.

. Given a planar map, can it be colored using 3 colors so that no
adjacent regions have the same color?

YES instance.

Planar 3-Colorability

PLANAR-3-COLOR.

. Given a planar map, can it be colored using 3 colors so that no
adjacent regions have the same color?

Planarity

Planarity. A graph is planar if it can be embedded on the plane (or
sphere) in such a way that no two edges graph.

. Applications: VLSI circuit design, computer graphics.

<> AW

K33' non-planar
Kuratowski's Theorem. An undirected graph G is non-planar if and
only if it contains a subgraph homeomorphic to K5 or K; 5.

Ks: non-planar

homeomorphic to K3 5

Planarity Testing

Kuratowski’'s Theorem. An undirected graph G is non-planar if and
only if it contains a subgraph homeomorphic to Kg or K3 5.

Brute force: O(nS).

. Step 1. Contract all nodes of degree 2.

. Step 2. Check all subsets of 5 nodes to see if they form a Kg.
. Step 3. Check all subsets of 6 nodes to see if they form aK; 5.

Cleverness: O(n).
. Step 1. DFS.
. Step 2. Tarjan.

Planar 3-Colorability
Claim. 3-COLOR < , PLANAR-3-COLOR.

Proof sketch: Given instance of 3-COLOR, draw graph in plane,
letting edges cross if necessary.

. Replace each edge crossing with the following planar gadget W.
-in any 3-coloring of W, opposite corners have the same color

- any assignment of colors to the corners in which opposite
corners have the same color extends to a 3-coloring of W

Planar 4-Colorability

PLANAR-4-COLOR: Given a planar map, can it be colored using 4
colors so that no adjacent regions have the same color?

Intuition.

. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and
PLANAR-5-COLOR.

. Don’t always believe your intuition!

Planar 4-Colorability

PLANAR-2-COLOR.
. Solvablein linear time.

PLANAR-3-COLOR.
. NP-complete.

PLANAR-4-COLOR.
. Solvable in O(1) time.

Theorem (Appel-Haken, 1976). Every planar map is 4-colorable.
. Resolved century-old open problem.
. Used 50 days of computer time to deal with many special cases.
. First major theorem to be proved using computer.

Problem Genres

Basic genres.

. Numerical problems: SUBSET-SUM, KNAPSACK, FACTOR.

Subset Sum

SUBSET-SUM: Given a set X of integers and a target integer t, is there
asubset SO Xwhose elements sum to exactly t.

Example: X ={1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}, t = 3754.
. YES: S={1, 16, 64, 256, 1040, 1093, 1284}.

Remark.
. With arithmetic problems, input integers are encoded in binary.
. Polynomial reduction must be polynomial in binary encoding.

SU bset SU m Treat as base k+1 integer
Claim. VERTEX-COVER <, SUBSET-SUM.

Proof. Given instance G, k of VERTEX-COVER, create following
instance of SUBSET-SUM.

e; e, e e, decimal
5,184
4,356
4,116
4,161
5,393
1,024
256

64

16

o

O|Rr|[O|O|O|FR|O|FR,|O|O
PR|O|O|O|O|O|O | |FL|O

oO|Oo|0O|C|O|rRr|FP,|O|OC|(O|F
oO|o|Oo|O|rRr|O|FR,|[O|O|FL|O
O|O|O|FR|O|O|O|(FR,|O|O|F
R|O|O|O|O|O|FR|FL,|O|O

o
o

Node-arc incidence matrix

(38 O |O|O |0 |0 |O|RP|FP|FP|FP]|F

t 2 2 2 2 2 2 15018

66

=~

Subset Sum

Claim. G has vertex cover of size k if and only if there is a subset S
that sums to exactly t.

Proof. O

e, e; e, e e; decimal

. Suppose G has a vertex cover C 111lo0l2lo0lo0]o0 5,184
of size k. 1]ol1]o]o|1]0 K
. LetS = CO{y;:|egn C|=1} 1(o|of0]|1[1]0 KK
- most significant bits add up 1/0|lo|1|0|0]|1 I
ok 11201]o]1 KR
- remaining bits add up to 2 ol1lololololo 1024
olol1|o|o|o0|0 LS
ololol1]o]o]o0 [N
/@\ /@\ olololo|1]0]o0 16
ololololo]1]o0
s € & & olololo]o]o]1
®e6ée4é t 3 2 2 2 2 2 2 15018

k

67

Subset Sum

Claim. G has vertex cover of size k if and only if there is a subset S
that sums to exactly t.

Proof. [e; e, e e, decimal
. Suppose subset S sums to t. 111/lo0l2lo0lo0]o0 5,184
. LetC = Sn {Xg..., X} 1{0[{1]/0]|0]|1]|0 [N
- each edge has three 1's, so 1(0(0(0]|1(1]|O0 Mk
no carries possible 11o0lol1lolol1 R
-ICl=k 1|11]o]2]o]1 LR
- at least one x; must ol1lololololo BEKE
contribute to sum for e, '
] o|0O|[1|0fO0]|O|O 256
ofojo|1j0|0f{oO 64
/(D\ /@)\ ofojo|joj1|0f{o 16
ofojojojof1fo
€& & & S oloflofofo]o[1
@—es éj €4 é t 3 2 2 2 2 2 2 15018

k

68

Partition

SUBSET-SUM: Given a set X of integers and a target integer t, is there
asubset SO Xwhose elements sum to exactly t.

PARTITION: Given aset X of integers, is there a subset S0 X such
that >a= 3 a.
als alX\S

Claim. SUBSET-SUM <, PARTITION.
Proof. Let (X, t) be an instance of SUBSET-SUM.
Define W to be sum of integers in X: W =3% a.
. Create instance of PARTITION: X’ =X O {2W -t} O {W + t}.
. SUBSET-SUM instance is yes if and only if PARTITION instance is.
- in any partition of X’
Each half of partition sums to 2W.
Two new elements can’t be in same partition.
Discard new elements [0 subset of X that sums to t.

Polynomial-Time Reductions

CNF-SAT
3-CNF-SAT CLIQUE il
i | i
Dick Karp (1972)
3-COLOR DIR-HAM-CYCLE IND-SET VERTEX-COVER
PLANAR-3- HAM-CYCLE SET-COVER SUBSET-SUM
COLOR
TSP PARTITION INTEGER

LOAD-BALANCE KNAPSACK

PROGRAMMING

