
Princeton University  •  COS 423  •  Theory of Algorithms  •  Spring 2001  •  Kevin Wayne 

Polynomial-Time Reductions

2

Contents

Contents.

■ Polynomial-time reductions.

■ Reduction from special case to general case.
– COMPOSITE reduces to FACTOR
– VERTEX-COVER reduces to SET-COVER

■ Reduction by simple equivalence.
– PRIMALITY reduces to COMPOSITE, and vice versa
– VERTEX COVER reduces to CLIQUE, and vice versa

■ Reduction from general case to special case.
– SAT reduces to 3-SAT
– 3-COLOR reduces to PLANAR-3-COLOR

■ Reduction by encoding with gadgets.
– 3-CNF-SAT reduces to CLIQUE
– 3-CNF-SAT reduces to HAM-CYCLE
– 3-CNF-SAT reduces to 3-COLOR

3

Polynomial-Time Reduction

Intuitively, problem X reduces to problem Y if:

■ Any instance of X can be "rephrased" as an instance of Y.

Formally, problem X polynomial reduces to problem Y if arbitrary 
instances of problem X can be solved using:

■ Polynomial number of standard computational steps, plus

■ Polynomial number of calls to oracle that solves problem Y.
– computational model supplemented by special piece of 

hardware that solves instances of Y in a single step

Remarks.

■ We pay for time to write down instances sent to black box  ⇒
instances of Y are of polynomial size.

■ Note:  Cook-Turing reducibility (not Karp or many-to-one).

■ Notation:  X ≤ P Y (or more precisely               ).YX T
P≤

4

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X ≤ P Y and Y can be solved in polynomial-time,  
then X can be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in 
polynomial-time, then X cannot be solved in polynomial time.

Anti-symmetry. If X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

■ Proof idea:  compose the two algorithms.

■ Given an oracle for Z, can solve instance of X:
– run the algorithm for X using a oracle for Y
– each time oracle for Y is called, simulate it in a polynomial 

number of steps by using algorithm for Y, plus oracle calls to Z



5

Polynomial-Time Reduction

Basic strategies.

■ Reduction by simple equivalence.

■ Reduction from special case to general case.

■ Reduction from general case to special case.

■ Reduction by encoding with gadgets.

6

Compositeness and Primality

COMPOSITE: Given the decimal representation of an integer x, does x 
have a nontrivial factor?

PRIME: Given the decimal representation of an integer x, is x prime?

Claim. COMPOSITE ≡ P PRIME.

■ COMPOSITE ≤ P PRIME.

■ PRIME ≤ P COMPOSITE.

IF (PRIME(x) = TRUE)
RETURN FALSE

ELSE
RETURN TRUE

COMPOSITE (x)

IF (COMPOSITE(x) = TRUE)
RETURN FALSE

ELSE
RETURN TRUE

PRIME (x)

7

3

6

10

7

Vertex Cover

VERTEX COVER:  Given an undirected graph G = (V, E) and an integer 
k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and if (v, w) ∈ E 
then either v ∈ S, w ∈ S or both.

Ex. 

■ Is there a vertex cover of size 4? 1

5

8

2

4 9

3

6

10

7YES.

8

3

6

10

7

Vertex Cover

VERTEX COVER:  Given an undirected graph G = (V, E) and an integer 
k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and if (v, w) ∈ E 
then either v ∈ S, w ∈ S or both.

Ex. 

■ Is there a vertex cover of size 4?

■ Is there a vertex cover of size 3?

1

5

8

2

4 9

YES.

NO.



9

Clique

CLIQUE: Given N people and their pairwise relationships.  Is there a 
group of S people such that every pair in the group knows each other.

Ex.

■ People: a, b, c, d, e, . . . , k.

■ Friendships: (a, e), (a, f), (a, g), . . ., (h, k).

■ Clique size: S = 4. ba c

h g

f

e

d

i

j

k

Friendship Graph

b

h

d

i

YES Instance

10

Vertex Cover and Clique

Claim. VERTEX COVER ≡ P CLIQUE.

■ Given an undirected graph G = (V, E), its complement is G’ = (V, E’), 
where E’ = { (v, w) : (v, w) ∉ E}.

■ G has a clique of size k if and only if G’ has a vertex cover of size 
|V| - k.

u

x

v

y

z w

G
Clique = {u, v, x, y}

u

x

v

y

z w

G’
Vertex cover = {w, z}

11

Vertex Cover and Clique

Claim. VERTEX COVER ≡ P CLIQUE.

■ Given an undirected graph G = (V, E), its complement is G’ = (V, E’), 
where E’ = { (v, w) : (v, w) ∉ E}.

■ G has a clique of size k if and only if G’ has a vertex cover of size 
|V| - k.

Proof.   ⇒
■ Suppose G has a clique S with |S| = k.

■ Consider S’ = V – S.

■ |S'| = |V| - k.

■ To show S' is a cover, consider any
edge (v, w) ∈ E'.

– then (v, w) ∉ E
– at least one of v or w is not in S

(since S forms a clique)
– at least one of v or w is in S’
– hence (v, w) is covered by S’

u

x

v

y

z w

u

x

v

y

z w

12

Vertex Cover and Clique

Claim. VERTEX COVER ≡ P CLIQUE.

■ Given an undirected graph G = (V, E), its complement is G’ = (V, E’), 
where E’ = { (v, w) : (v, w) ∉ E}.

■ G has a clique of size k if and only if G’ has a vertex cover of size 
|V| - k.

Proof.  ⇐
■ Suppose G’ has a cover S’ with |S’| = |V| - k.

■ Consider S = V – S'.

■ Clearly |S| = k.

■ To show S is a clique, consider some
edge (v, w) ∈ E'.

– if (v, w) ∈ E’, then either v ∈ S’, w ∈ S’, or both
– by contrapositive, if v ∉ S’ and w ∉ S’,

then (v, w) ∈ E
– thus S is a clique in G

u

x

v

y

z w

u

x

v

y

z w



13

Polynomial-Time Reduction

Basic strategies.

■ Reduction by simple equivalence.

■ Reduction from special case to general case.

■ Reduction from general case to special case.

■ Reduction by encoding with gadgets.

14

Compositeness Reduces to Factoring

COMPOSITE: Given an integer x, does x have a nontrivial factor?

FACTOR: Given two integers x and y, does x have a nontrivial factor 
less than y?

Claim. COMPOSITE ≤ P FACTOR.

Proof. Given an oracle for FACTOR, we solve COMPOSITE.

■ Is 350 composite?

■ Does 350 have a nontrivial factor
less than 350?

IF (FACTOR(x, x) = TRUE)
RETURN TRUE

ELSE
RETURN FALSE

COMPOSITE (x)

15

Primality Testing and Factoring

We established:

■ PRIME ≤ P COMPOSITE ≤ P FACTOR.

Natural question:

■ Does FACTOR ≤ P PRIME ?

■ Consensus opinion = NO.

State-of-the-art.

■ PRIME in randomized P and conjectured to be in P. 

■ FACTOR not believed to be in P.

RSA cryptosystem.

■ Based on dichotomy between two problems.

■ To use, must generate large primes efficiently.

■ Can break with efficient factoring algorithm.

16

Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of 
subsets of U, and an integer k, does there exist a collection of at most 
k of these sets whose union is equal of U?

Sample application.

■ n available pieces of software.

■ Set U of n capabilities that we would like our system to have.

■ The ith piece of software provides the set Si ⊆ U of capabilities.

■ Goal:  achieve all n capabilities using small number of pieces of 
software.

Ex.  U = {1, 2, 3, . . . , 12},  k = 3.

■ S1 = {1, 2, 3, 4, 5, 6} S2 = {5, 6, 8, 9}

■ S3 = {1, 4, 7, 10} S4 = {2, 5, 7, 8, 11}

■ S5 = {3, 6, 9, 12} S6 = {10, 11}
YES:  S3, S4, S5.



17

Vertex Cover Reduces to Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sn’ of 
subsets of U, and an integer k, does there exist a collection of at most 
k of these sets whose union is equal to U?

VERTEX COVER:  Given an undirected graph G = (V, E) and an integer 
k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and if (v, w) ∈ E 
then either v ∈ S, w ∈ S or both.

Claim. VERTEX-COVER ≤ P SET-COVER.

Proof. Given black box that solves instances of SET-COVER.

a

d

b

e

f c

Vertex Cover

U = {1, 2, 3, 4, 5, 6, 7}
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Set Cover

G = (V, E)
k = 2

e1 

e2 
e3 

e5 

e4 

e6 

e7 

18

Vertex Cover Reduces to Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sn’ of 
subsets of U, and an integer k, does there exist a collection of at most 
k of these sets whose union is equal to U?

VERTEX COVER:  Given an undirected graph G = (V, E) and an integer 
k, is there a subset of vertices S ⊆ V such that |S| ≤ k, and if (v, w) ∈ E 
then either v ∈ S, w ∈ S or both.

Claim. VERTEX-COVER ≤ P SET-COVER.

Proof. Given black box that solves instances of SET-COVER.

■ Let G = (V, E), k be an instance of VERTEX-COVER.

■ Create SET-COVER instance:
– k = k, U = E, Sv = {e ∈ E : e incident to v }

■ Set-cover of size at most k if and only if vertex cover of size at 
most k.

19

Polynomial-Time Reduction

Basic strategies.

■ Reduction by simple equivalence.

■ Reduction from special case to general case.

■ Reduction from general case to special case.

■ Reduction by encoding with gadgets.

20

Factoring and Finding Factors

FACTOR: Given two integers x and y, does x have a nontrivial factor 
less than y?

FACTORIZE: Given an integer x, find its prime factorization.

Claim. FACTORIZE ≡ P FACTOR.
Proof:  FACTOR ≤ P FACTORIZE.

■ Reduction from special case to general case.

S ← FACTORIZE(x)
d ← smallest factor in S
IF (d < y)

RETURN TRUE
ELSE

RETURN FALSE

FACTOR (x)

S = prime factorization
is of polynomial size



21

Factoring and Finding Factors

FACTOR: Given two integers x and y, does x have a nontrivial factor 
less than y?

FACTORIZE: Given an integer x, find its prime factorization.

Claim. FACTORIZE ≡ P FACTOR.
Proof:  FACTORIZE ≤ P FACTOR.

■ Reduction from general
case to special case.

IF (FACTOR(x, x) = NO)
S ← S ∪ {x}
RETURN

left = 1, right = x
WHILE (right > left + 1)

mid = (left + right) / 2
IF (FACTOR(x, mid) = TRUE)

right = mid
ELSE

left = mid
S ← S ∪ {left}
FACTORIZE(x / left)

FACTORIZE(x)

find smallest factor 
via binary search

S = global variable 
containing set of factors

22

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A Boolean formula
that is the conjunction of clauses.

CNF-SAT: Given propositional formula in conjunctive normal form, 
does it have a satisfying truth assignment?

Satisfiability

321 xxxC j ∨∨=

ii xx   or  

4321 CCCCB ∧∧∧=

( ) ( ) ( ) ( )32132321321 xxxxxxxxxxx ∨∨∧∨∧∨∨∧∨∨

YES instance
x1 = true
x1 = true
x1 = false

23

SAT Reduces to 3-SAT

3-CNF-SAT: CNF-SAT, where each clause has 3 distinct literals.

Claim. CNF-SAT ≤ P 3-CNF-SAT.

■ Case 3:  clause Cj contains exactly 3 terms.

■ Case 2:  clause Cj contains exactly 2 terms.
– add 1 new term, and replace Cj with 2 clauses

■ Case 1:  clause Cj contains exactly 1 term.
– add 4 new terms, and replace Cj with 4 clauses

yxxC

yxxCxxC

j

jj

∨∨=
∨∨=⇒∨=

73
’
2

73
’
173

213
’
4

213
’
3

213
’
2

213
’
13

yyxC

yyxC

yyxC

yyxCxC

j

j

j

jj

∨∨=

∨∨=

∨∨=

∨∨=⇒=

24

SAT Reduces to 3-SAT

3-CNF-SAT: CNF-SAT, where each clause has 3 distinct literals.

Claim. CNF-SAT ≤ P 3-CNF-SAT.

■ Case 4:  clause Cj contains l ≥ 4 terms.
– introduce l - 1 extra Boolean variables
– replace Cj with l clauses

995
’
6

564
’
5

453
’
4

342
’
3

231
’
2

111
’
1965431

xxyC

yxyC

yxyC

yxyC

yxyC

yxxCxxxxxxC

j

j

j

j

j

jj

∨∨=
∨∨=
∨∨=
∨∨=
∨∨=
∨∨=⇒∨∨∨∨∨=



25

■ Case 4:  clause Cj contains l ≥ 4 terms.

Claim. CNF-SAT instance is satisfiable
if and only if 3-CNF-SAT instance is.

Proof.  ⇒ Suppose SAT instance is satisfiable.

■ If SAT assignment sets tjk = 1, 3-SAT assignment sets:
– tjk = 1
– ym = 1 for all m < k;  ym = 0 for all m ≥ k

llll

l

MMMM

L

jjj

jj

jj

jj

jj

jjjjjjjj

ttyC

ytyC

ytyC

ytyC

ytyC

yttCttttC

∨∨=

∨∨=
∨∨=

∨∨=

∨∨=

∨∨=⇒∨∨∨∨=

−1
’

554
’
5

443
’
4

332
’
3

221
’
2

111
’
1321

SAT Reduces to 3-SAT

k = 4

set TRUE

26

■ Case 2:  clause Cj contains l ≥ 4 terms.

Claim. CNF-SAT instance is satisfiable
if and only if 3-CNF-SAT instance is.

Proof. ⇐ Suppose 3-SAT instance is satisfiable.

■ If 3-SAT assignment sets tjk = 1, SAT assignment sets tjk = 1.

■ Consider clause Cj . We claim tjk = 1 for some k.
– each of l - 1 new Boolean variables yj can only make one of l

new clauses true
– the remaining clause must be satisfied by an original term tjk

SAT Reduces to 3-SAT

llll

l

MMMM

L

jjj

jj

jj

jj

jj

jjjjjjjj

ttyC

ytyC

ytyC

ytyC

ytyC

yttCttttC

∨∨=

∨∨=
∨∨=

∨∨=

∨∨=

∨∨=⇒∨∨∨∨=

−1
’

554
’
5

443
’
4

332
’
3

221
’
2

111
’
1321

27

Polynomial-Time Reduction

Basic strategies.

■ Reduction by simple equivalence.

■ Reduction from special case to general case.

■ Reduction from general case to special case.

■ Reduction by encoding with gadgets.

28

Clique

CLIQUE: Given N people and their pairwise relationships.  Is there a 
group of C people such that every pair in the group knows each other.

Ex.

■ People: a, b, c, d, e, . . . , k.

■ Friendships: (a, e), (a, f), (a, g), . . ., (h, k).

■ Clique size: C = 4. ba c

h g

f

e

d

i

j

k

Friendship Graph

b

h

d

i

YES Instance



29

Satisfiability Reduces to Clique

Claim. CNF-SAT ≤ P CLIQUE.

■ Given instance of CNF-SAT, create a person for each literal in each 
clause.

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)
C = 4 clauses

first clause

yx’ z

y z

z

y’

x

z’

y’

x’

30

Satisfiability Reduces to Clique

Claim. CNF-SAT ≤ P CLIQUE.

■ Given instance of CNF-SAT, create a person for each literal in each 
clause.

■ Two people know each other except if:
– they come from the same clause
– they represent a literal and its negation

yx’ z

y z

z

y’

x

z’

y’

x’

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)
C = 4 clauses

31

Satisfiability Reduces to Clique

Claim. CNF-SAT ≤ P CLIQUE.

■ Given instance of CNF-SAT, create a person for each literal in each 
clause.

■ Two people know each other except if:
– they come from the same clause
– they represent a literal and its negation

■ Clique of size C  ⇒ satisfiable assignment.
– set variable in clique to true
– (x, y, z) = (true, true, false)

yx’ z

y z

z

y’

x

z’

y’

x’

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)
C = 4 clauses

32

Satisfiability Reduces to Clique

Claim. CNF-SAT ≤ P CLIQUE.

■ Given instance of CNF-SAT, create a person for each literal in each 
clause.

■ Two people know each other except if:
– they come from the same clause
– they represent a literal and its negation

■ Clique of size C  ⇒ satisfiable assignment.

■ Satisfiable assignment  ⇒ clique of size C.
– (x, y, z) = (true, true, false)
– choose one true literal from each

clause 

yx’ z

y z

z

y’

x

z’

y’

x’

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)
C = 4 clauses



33

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIR-HAM-CYCLE

HAM-CYCLE

IND-SET

CLIQUE

SUBSET-SUM

VERTEX-COVER

TSP

SET-COVER

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)

PLANAR-3-
COLOR

SCHEDULE
34

Problem Genres

Basic genres.

■ Packing problems:  SET-PACKING, INDEPENDENT SET.

■ Covering problems:  SET-COVER, VERTEX-COVER.

■ Constraint satisfaction problems:  SAT, 3-SAT.

■ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems:  3D-MATCHING, 3-COLOR.

■ Numerical problems:  SUBSET-SUM, KNAPSACK, FACTOR.

35

Hamiltonian Cycle

HAMILTONIAN-CYCLE: given an undirected graph G = (V, E), does 
there exists a simple cycle C that contains every vertex in V.

YES:  vertices and faces of a dodecahedron.
36

Hamiltonian Cycle

HAMILTONIAN-CYCLE: given an undirected graph G = (V, E), does 
there exists a simple cycle C that contains every vertex in V.

1

3

5

1’

3’

2

4

2’

4’

NO:  bipartite graph with odd number of nodes.



37

Finding a Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a 
simple cycle C that contains every vertex in V.

FIND-HAM-CYCLE: given an undirected graph G = (V, E), output a 
Hamiltonian cycle if one exists, otherwise output any cycle.

Claim. HAM-CYLCE ≡ P FIND-HAM-CYCLE.

Proof.  ≤ P

C ← FIND-HAM-CYCLE(G) 
IF (C is Hamiltonian)

RETURN TRUE
ELSE 

RETURN FALSE

HAM-CYCLE (G)

38

Finding a Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a 
simple cycle C that contains every vertex in V.

FIND-HAM-CYCLE: given an undirected graph G = (V, E), output a 
Hamiltonian cycle if one exists, otherwise output any cycle.

Claim. HAM-CYLCE ≡ P FIND-HAM-CYCLE.

Proof.  ≥ P

IF (HAM-CYCLE(G) = FALSE)
RETURN FALSE

A ← E
FOR EACH e ∈ E

IF (HAM-CYCLE(V, A - {e}) = TRUE)
A ← A - {e}

RETURN unique cycle remaining in G

FIND-HAM-CYCLE (G)

39

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a directed graph G = (V, E), does there exists 
a simple directed cycle C that contains every vertex in V.

Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Proof.

■ Given a directed graph G = (V, E), construct an undirected graph G’ 
with 3n vertices.

v

a

b

c

d

e

vin

aout

bout

cout

din

ein

G
G’

v vout

40

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle if and only if G’ does.

Proof.  ⇒
■ Suppose G has a directed Hamiltonian cycle C.

■ Then G’ has an undirected Hamiltonian cycle.

Proof.  ⇐
■ Suppose G’ has an undirected Hamiltonian cycle C’.

■ C’ must visit nodes in G’ using one of following two orders:
. . . , G, R, B, G, R, B, G, R, B, . . . 
. . . , R, G, B, R, G, B, R, G, B, . . . 

■ Blue nodes in C’ make up directed Hamiltonian cycle C in G, or 
reverse of one.



41

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-CNF-SAT ≤ P DIR-HAM-CYCLE.

■ Why not reduce from some other problem?
! Need to find another problem that is sufficiently close.

(could reduce from VERTEX-COVER)
! If don’t succeed, start from 3-CNF-SAT since its 

combinatorial structure is very basic.
! Downside:  reduction will require certain level of 

complexity.

42

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables xi and k clauses Cj.

■ Construct G to have 2n Hamiltonian cycles.

■ Intuition:  traverse path i from left to right  ⇔ set variable xi = 1.

s

t

n

3k + 3

43

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables xi and k clauses Cj.

■ Add node and 6 edges for each clause.

s

t

3211 VV xxxC =

x1

x2

x3

44

3-SAT Reduces to Directed Hamiltonian Cycle

Proof: Given 3-CNF-SAT instance with n variables xi and k clauses Cj.

■ Add node and 6 edges for each clause.

s

t

3212 VV xxxC =

x1

x2

x3



45

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-CNF-SAT instance is satisfiable if and only if corresponding 
graph G has a Hamiltonian cycle.

Proof. ⇒
■ Suppose 3-SAT instance has satisfying assignment x*.

■ Then, define Hamiltonian cycle in G as follows:
– if x*i = 1, traverse path Pi  from left to right
– if x*i = 0, traverse path Pi  from right to left
– for each clause Cj , there will be at least one path Pi in which we 

are going in "correct" direction to splice node Cj into tour

46

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-CNF-SAT instance is satisfiable if and only if corresponding 
graph G has a Hamiltonian cycle.

Proof. ⇒
■ Suppose G has a Hamiltonian cycle C.

■ If C enters clause node Cj , it must depart on mate edge.
– thus, nodes immediately before and after Cj are connected by an 

edge e in G
– removing Cj from cycle, and replacing it with edge e yields 

Hamiltonian cycle on G - {Cj }

■ Continuing in this way, we are left with Hamiltonian cycle C’ in
G - {C1 , C2 ,  . . . , Ck}.

■ Set x*i = 1 if  path Pi  if traversed from left to right, and 0 otherwise.

■ Since C visits each clause node Cj , at least one of the paths is 
traversed in "correct" direction, and each clause is satisfied.

47

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIR-HAM-CYCLE

HAM-CYCLE

IND-SET

CLIQUE

SUBSET-SUM

VERTEX-COVER

TSP

SET-COVER

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)

PLANAR-3-
COLOR

SCHEDULE
48

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal 
to abandon hope of finding an efficient algorithm.



49

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal 
to abandon hope of finding an efficient algorithm.

50

Implications Reduction

Proof that a problem is as hard as CNF-SAT is usually taken as signal 
to abandon hope of finding an efficient algorithm.

51

Problem Genres

Basic genres.

■ Packing problems:  SET-PACKING, INDEPENDENT SET.

■ Covering problems:  SET-COVER, VERTEX-COVER.

■ Constraint satisfaction problems:  SAT, 3-SAT.

■ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems:  3-COLOR.

■ Numerical problems:  SUBSET-SUM, KNAPSACK, FACTOR.

52

3-Colorability

3-COLOR: Given an undirected graph does there exists a way to color 
the nodes R, G, and B such no adjacent nodes have the same color?

YES instance



53

3-Colorability

Claim. 3-CNF-SAT ≤ P 3-COLOR.
Proof:  Given 3-SAT instance with n variables xi and k clauses Cj.

■ Create instance of 3-COLOR G = (V, E) as follows.

■ Step 1:
– create triangle R (false), G (true), or B
– create nodes for each literal and connect to B

! Each literal colored R or G.
– create nodes for each literal, and connect literal to its negation

! Each literal colored opposite of its negation.

T

B

F

1x 1x 2x 2x nx nx3x 3x

Step 1

54

3-Colorability

Claim. 3-CNF-SAT ≤ P 3-COLOR.
Proof:  Given 3-SAT instance with n variables xi and k clauses Cj. 

■ Step 2:
– for each clause, add "gadget" of 6 new nodes and 13 new edges

3211 VV xxxC =

Step 2

T

1x 2x 3x

F

B

55

3-Colorability

Claim. 3-CNF-SAT ≤ P 3-COLOR.
Proof:  Given 3-SAT instance with n variables xi and k clauses Cj. 

■ Step 2:
– for each clause, add "gadget" of 6 new nodes and 13 new edges
– if 3-colorable, top row must have at least one green (true) node

! Otherwise, middle row all blue.
! Bottom row alternates between green and red ⇒

contradiction.

3211 VV xxxC =

Step 2

T

1x 2x 3x

F

1x 2x 3x

B

56

3-Colorability

Claim. 3-CNF-SAT ≤ P 3-COLOR.
Proof:  Given 3-SAT instance with n variables xi and k clauses Cj. 

■ Step 2:
– for each clause, add "gadget" of 6 new nodes and 13 new edges
– if top row has green (true) node, then 3-colorable

! Color vertex below green node red, and one below that blue.
! Color remaining middle row nodes blue.
! Color remaining bottom nodes red or green, as forced.

3211 VV xxxC =

Step 2

T

1x 2x 3x

F

x3

B



57

Planar 3-Colorability

PLANAR-3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

YES instance.

58

Planar 3-Colorability

PLANAR-3-COLOR.

■ Given a planar map, can it be colored using 3 colors so that no 
adjacent regions have the same color?

NO instance.

59

Planarity.  A graph is planar if it can be embedded on the plane (or 
sphere) in such a way that no two edges graph.

■ Applications:  VLSI circuit design, computer graphics.

Kuratowski’s Theorem. An undirected graph G is non-planar if and 
only if it contains a subgraph homeomorphic to K5 or K3,3.

Planarity

Planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

60

Kuratowski’s Theorem. An undirected graph G is non-planar if and 
only if it contains a subgraph homeomorphic to K5 or K3,3.

Brute force:  O(n6).

■ Step 1.  Contract all nodes of degree 2.

■ Step 2.  Check all subsets of 5 nodes to see if they form a K5.

■ Step 3.  Check all subsets of 6 nodes to see if they form a K3,3.

Cleverness: O(n).

■ Step 1.  DFS.

■ Step 2.  Tarjan.

Planarity Testing



61

Planar 3-Colorability

Claim. 3-COLOR ≤ P PLANAR-3-COLOR.

Proof sketch:  Given instance of 3-COLOR, draw graph in plane, 
letting edges cross if necessary.

■ Replace each edge crossing with the following planar gadget W.
– in any 3-coloring of W, opposite corners have the same color
– any assignment of colors to the corners in which opposite 

corners have the same color extends to a 3-coloring of W

62

Planar 4-Colorability

PLANAR-4-COLOR: Given a planar map, can it be colored using 4 
colors so that no adjacent regions have the same color?

Intuition.

■ If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and 
PLANAR-5-COLOR.

■ Don’t always believe your intuition!

63

Planar 4-Colorability

PLANAR-2-COLOR.

■ Solvable in linear time.

PLANAR-3-COLOR.

■ NP-complete.

PLANAR-4-COLOR.

■ Solvable in O(1) time.

Theorem (Appel-Haken, 1976).  Every planar map is 4-colorable.

■ Resolved century-old open problem.

■ Used 50 days of computer time to deal with many special cases.

■ First major theorem to be proved using computer.

64

Problem Genres

Basic genres.

■ Packing problems:  SET-PACKING, INDEPENDENT SET.

■ Covering problems:  SET-COVER, VERTEX-COVER.

■ Constraint satisfaction problems:  SAT, 3-SAT.

■ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems:  3D-MATCHING.

■ Numerical problems:  SUBSET-SUM, KNAPSACK, FACTOR.



65

Subset Sum

SUBSET-SUM: Given a set X of integers and a target integer t, is there 
a subset  S ⊆ X whose elements sum to exactly t.

Example: X = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344},  t = 3754.

■ YES:  S = {1, 16, 64, 256, 1040, 1093, 1284}.

Remark.

■ With arithmetic problems, input integers are encoded in binary.

■ Polynomial reduction must be polynomial in binary encoding.

66

Subset Sum

Claim. VERTEX-COVER ≤ P SUBSET-SUM.
Proof. Given instance G, k of VERTEX-COVER, create following 
instance of SUBSET-SUM.

1

4 5

2

3e4

e5e2e1e3

1 0 0 01 0
e3 e4 e5 e6e1 e2

v1

0 0 1 00 1v2

0 1 1 00 0v3

1 0 0 10 0v4

0 1 0 11 1v5

Node-arc incidence matrix

e6

1 0 0 01 0

e3 e4 e5 e6e1 e2

x1

0 0 1 00 1x2

0 1 1 00 0x3

1 0 0 10 0x4

0 1 0 11 1x5

1

1
1

1
1

0 0 0 01 0y1

0 0 0 00 1y2

1 0 0 00 0y3

0 1 0 00 0y4

0 0 1 00 0y5

0 0 0 10 0y6

0

0
0

0
0

0

5,184

decimal

4,356
4,116

4,161
5,393

1,024

256
64

16
4

1

Treat as base k+1 integer

k = 3

2 2 2 22 2t 3 15,018
k

67

Subset Sum

Claim. G has vertex cover of size k if and only if there is a subset S 
that sums to exactly t. 

Proof. ⇒
■ Suppose G has a vertex cover C

of size k.

■ Let S  =  C ∪ { yj : |ej  ∩ C| = 1 }

– most significant bits add up
to k

– remaining bits add up to 2

1

4 5

2

3e4

e5e2e1e3

e6

1 0 0 01 0

e3 e4 e5 e6e1 e2

x1

0 0 1 00 1x2

0 1 1 00 0x3

1 0 0 10 0x4

0 1 0 11 1x5

0 0 0 01 0y1

0 0 0 00 1y2

1 0 0 00 0y3

0 1 0 00 0y4

0 0 1 00 0y5

0 0 0 10 0y6

1

1

1

1
1

0

0

0

0
0

0

2 2 2 22 2t 3

5,184

decimal

4,356

4,116

4,161
5,393

1,024

256

64

16
4

1

15,018
k 68

Subset Sum

Claim. G has vertex cover of size k if and only if there is a subset S 
that sums to exactly t. 

Proof. ⇐
■ Suppose subset S sums to t.

■ Let C  =  S ∩ {x1, . . . , xn}.
– each edge has three 1’s, so

no carries possible
– |C| = k
– at least one xi must

contribute to sum for ej

1

4 5

2

3e4

e5e2e1e3

e6

1 0 0 01 0

e3 e4 e5 e6e1 e2

x1

0 0 1 00 1x2

0 1 1 00 0x3

1 0 0 10 0x4

0 1 0 11 1x5

0 0 0 01 0y1

0 0 0 00 1y2

1 0 0 00 0y3

0 1 0 00 0y4

0 0 1 00 0y5

0 0 0 10 0y6

1

1

1

1
1

0

0

0

0
0

0

2 2 2 22 2t 3

5,184

decimal

4,356

4,116

4,161
5,393

1,024

256

64

16
4

1

15,018
k



69

Partition

SUBSET-SUM: Given a set X of integers and a target integer t, is there 
a subset  S ⊆ X whose elements sum to exactly t.

PARTITION: Given a set X of integers, is there a subset S ⊆ X such 
that

Claim. SUBSET-SUM ≤ P PARTITION.
Proof. Let (X, t) be an instance of SUBSET-SUM.

■ Define W to be sum of integers in X:

■ Create instance of PARTITION: X’ = X ∪ {2W - t} ∪ {W + t}.

■ SUBSET-SUM instance is yes if and only if PARTITION instance is.
– in any partition of X’

! Each half of partition sums to 2W.
! Two new elements can’t be in same partition.
! Discard new elements ⇒ subset of X that sums to t.

.
\

∑∑
∈∈

=
SXaSa
aa

.∑ ∈= Xa aW

70

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIR-HAM-CYCLE

HAM-CYCLE

IND-SET

CLIQUE

SUBSET-SUM

VERTEX-COVER

TSP

SET-COVER

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp (1972)

PLANAR-3-
COLOR

LOAD-BALANCE


