
Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

MST: Red Rule, Blue Rule

Some of these lecture slides are adapted from material in:
• Data Structures and Algorithms, R. E. Tarjan.
• Randomized Algorithms, R. Motwani and P. Raghavan.

2

Cycles and Cuts

Cycle.

■ A cycle is a set of arcs of the form {a,b}, {b,c}, {c,d}, . . ., {z,a}.

Cut.

■ The cut induced by a subset of nodes S is the set of all arcs with
exactly one endpoint in S.

Path = 1-2-3-4-5-6-1
Cycle = {1, 2}, {2, 3}, {3, 4},

{4, 5}, {5, 6}, {6, 1}

1
3

8

2

6

7

4

5

S = {4, 5, 6}
Cut = {5, 6}, {5, 7}, {3, 4},

{3, 5}, {7, 8}

1
3

8

2

6

7

4

5

3

Cycle-Cut Intersection

A cycle and a cut intersect in an even number of arcs.

Proof.

1
3

8

2

6

7

4

5

S

V - S

C

Intersection = {3, 4}, {5, 6}

4

Spanning Tree

Spanning tree. Let T = (V, F) be a subgraph of G = (V, E). TFAE:

■ T is a spanning tree of G.

■ T is acyclic and connected.

■ T is connected and has |V| - 1 arcs.

■ T is acyclic and has |V| - 1 arcs.

■ T is minimally connected: removal of any arc disconnects it.

■ T is maximally acyclic: addition of any arc creates a cycle.

■ T has a unique simple path between every pair of vertices.

1
3

8

2

6

7

4

5

1
3

8

2

6

7

4

5

G = (V, E) T = (V, F)

5

Minimum Spanning Tree

Minimum spanning tree. Given connected graph G with real-valued
arc weights ce, an MST is a spanning tree of G whose sum of arc
weights is minimized.

Cayley’s Theorem (1889). There are nn-2 spanning trees of Kn.

■ n = |V|, m = |E|.

■ Can’t solve MST by brute force.

1
3

8

2

6

7

4
5

5

23

10

21

14

24

16

6

4

18
9

7

11
8

1

3

8

2

6

7

4
5

5

6

4

9

7

11
8

G = (V, E) T = (V, F) w(T) = 50

6

Applications

MST is central combinatorial problem with divserse applications.

■ Designing physical networks.
– telephone, electrical, hydraulic, TV cable, computer, road

■ Cluster analysis.
– delete long edges leaves connected components
– finding clusters of quasars and Seyfert galaxies
– analyzing fungal spore spatial patterns

■ Approximate solutions to NP-hard problems.
– metric TSP, Steiner tree

■ Indirect applications.
– describing arrangements of nuclei in skin cells for cancer research
– learning salient features for real-time face verification
– modeling locality of particle interactions in turbulent fluid flow
– reducing data storage in sequencing amino acids in a protein

7

Optimal Message Passing

Optimal message passing.

■ Distribute message to N agents.

■ Each agent can communicate with some of the other agents, but their
communication is (independently) detected with probability pij.

■ Group leader wants to transmit message (e.g., Divx movie) to all
agents so as to minimize the total probability that message is detected.

Objective.

■ Find tree T that minimizes:

■ Or equivalently, that maximizes:

■ Or equivalently, that maximizes:

■ Or equivalently, MST with weights pij.

1− 1− pij()
(i, j)∈T

∏

1− pij()
(i, j)∈T

∏

log 1− pij()
(i, j)∈T

∑

8

Fundamental Cycle

Fundamental cycle.

■ Adding any non-tree arc e to T forms unique cycle C.

■ Deleting any arc f ∈ C from T ∪ {e} results in new spanning tree.

Cycle optimality conditions: For every non-tree arc e, and for every
tree arc f in its fundamental cycle: cf ≤ ce.
Observation: If cf > ce then T is not a MST.

1
3

8

2

6

7

4

5 f

e

9

9

Fundamental Cut

Fundamental cut.

■ Deleting any tree arc f from T disconnects tree into two
components with cut D.

■ Adding back any arc e ∈ D to T - {f} results in new spanning tree.

Cut optimality conditions: For every tree arc f, and for every non-tree
arc e in its fundamental cut: ce ≥ cf.
Observation: If ce < cf then T not a MST.

1
3

8

2

6

7

4

5

f

e

9

10

MST: Cut Optimality Conditions

Theorem. Cut optimality ⇒ MST. (proof by contradiction)

■ T = spanning tree that satisfies cut optimality conditions.
T* = MST that has as many arcs in common with T as possible.

■ If T = T*, then we are done. Otherwise, let f ∈ T s.t. f ∉ T*.

■ Let D be fundamental cut formed by deleting f from T.

■ Adding f to T* creates a fund cycle C, which shares (at least) two arcs
with cut D. One is f, let e be another. Note: e ∉ T.

■ Cut optimality conditions ⇒ cf ≤ ce.

■ Thus, we can replace e with f in T* without increasing its cost.

f

T T*

e

f

e

11

MST: Cycle Optimality Conditions

Theorem. Cut optimality ⇒ MST. (proof by contradiction)

■ T = spanning tree that satisfies cut optimality conditions.
T* = MST that has as many arcs in common with T as possible.

■ If T = T*, then we are done. Otherwise, let f ∈ T s.t. f ∉ T*.

■ Let D be fundamental cut formed by deleting f from T.

■ Adding f to T* creates a fund cycle C, which shares (at least) two arcs
with cut D. One is f, let e be another. Note: e ∉ T.

■ Cut optimality conditions ⇒ cf ≤ ce.

■ Thus, we can replace e with f in T* without increasing its cost.

f

T T*

e

f

e

Cycle

cycle

e ∈ T* s.t. e ∉ T

adding e tocycle

Deleting e from cut D

cycle C

C

e fCycle f ∉ T*

12

Towards a Generic MST Algorithm

If all arc weights are distinct:

■ MST is unique.

■ Arc with largest weight in cycle C is not in MST.
– cycle optimality conditions

■ Arc with smallest weight in cutset D is in MST.
– cut optimality conditions

S S’

C

13

Generic MST Algorithm

Red rule.

■ Let C be a cycle with no red arcs. Select an uncolored arc of C of
max weight and color it red.

Blue rule.

■ Let D be a cut with no blue arcs. Select an uncolored arc in D of
min weight and color it blue.

Greedy algorithm.

■ Apply the red and blue rules (non-deterministically!) until all arcs
are colored. The blue arcs form a MST.

■ Note: can stop once n-1 arcs colored blue.

14

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

■ Base case: no arcs colored ⇒ every MST satisfies invariant.

■ Induction step: suppose color invariant true before blue rule.
– let D be chosen cut, and let f be arc colored blue
– if f ∈ T*, T* still satisfies invariant
– o/w, consider fundamental cycle C by adding f to T*
– let e ∈ C be another arc in D
– e is uncolored and ce ≥ cf since

! e ∈ T* ⇒ not red
! blue rule ⇒ not blue, ce ≥ cf

– T* ∪ { f } - { e } satisfies invariant

f

T*
e

Color Invariant: There exists a MST T* containing all the blue
arcs and none of the red ones.

15

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

■ Base case: no arcs colored ⇒ every MST satisfies invariant.

■ Induction step: suppose color invariant true before blue rule.
– let D be chosen cut, and let f be arc colored blue
– if f ∈ T*, T* still satisfies invariant
– o/w, consider fundamental cycle C by adding f to T*
– let e ∈ C be another arc in D
– e is uncolored and ce ≥ cf since

! e ∈ T* ⇒ not red
! blue rule ⇒ not blue, ce ≥ cf

– T* ∪ { f } - { e } satisfies invariant

Color Invariant: There exists a MST T* containing all the blue
arcs and none of the red ones.

f

e

red
C cycle rede

e ∉ T*

cut D deleting e from

f ∈ D C

f
f ∉ T* blue

red rule f not red

T*
16

Greedy Algorithm: Proof of Correctness

Proof (continued).

■ Induction step: suppose color invariant true before red rule.
– cut-and-paste

■ Either the red or blue rule (or both) applies.
– suppose arc e is left uncolored
– blue edges form a forest

Case 1

e

Case 2

e

17

Special Case: Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

■ S = vertices in tree connected by blue arcs.

■ Initialize S = any vertex.

■ Apply blue rule to cut induced by S.

1

3

8

2

6

7

4

5

18

Implementing Prim’s Algorithm

O(m + n log n)

O(n2)

Fib. heap

array

Q ← PQinit()
for each v ∈ V

key(v) ← ∞
pred(v) ← nil
PQinsert(v, Q)

key(s) ← 0
while (!PQisempty(Q))

v = PQdelmin(Q)
for each w ∈ Q s.t {v,w} ∈ E

if key(w) > c(v,w)
PQdeckey(w, c(v,w))
pred(w) ← v

Prim’s Algorithm

19

Dijkstra’s Shortest Path Algorithm

O(m + n log n)

O(n2)

Fib. heap

array

Q ← PQinit()
for each v ∈ V

key(v) ← ∞
pred(v) ← nil
PQinsert(v, Q)

key(s) ← 0
while (!PQisempty(Q))

v = PQdelmin(Q)
for each w ∈ Q s.t {v,w} ∈ E

if key(w) > c(v,w)
PQdeckey(w, c(v,w))
pred(w) ← v

Prim’s Algorithm

c(v,w) + key(v)

Dijkstra’s

20

Special Case: Kruskal’s Algorithm

Kruskal’s algorithm (1956).

■ Consider arcs in ascending order of weight.
– if both endpoints of e in same blue tree, color red by applying

red rule to unique cycle
– else color e blue by applying blue rule to cut consisting of all

vertices in blue tree of one endpoint

1

3

8

2

6

7

4

5

Case 1: {5, 8}

1

3

8

2

6

7

4

5

Case 2: {5, 6}

21

Implementing Kruskal’s Algorithm

Sort edges weights in ascending order
c1 ≤ c2 ≤ ... ≤ cm.

S = φ
for each v ∈ V

UFmake-set(v)

for i = 1 to m
(v,w) = ei
if (UFfind-set(v) ≠ UFfind-set(w))

S ← S ∪ {i}
UFunion(v, w)

Kruskal’s Algorithm

O(n log n) O(m α (m, n))

sorting union-find

22

Special Case: Boruvka’s Algorithm

Boruvka’s algorithm (1926).

■ Apply blue rule to cut corresponding to each blue tree.

■ Color all selected arcs blue.

■ O(log n) phases since each phase halves total # nodes.

1

3

8

2

6

7

4

5

1

3

8

2

6

7

4

5

O(m log n)

23

Implementing Boruvka’s Algorithm

Boruvka implementation.

■ Contract blue trees, deleting loops and parallel arcs.

■ Remember which edges were contracted in each super-node.

{1, 2}

{6, 7} {3, 4}, {4, 5}, {4, 8}

1

3

8

2

6

7

4

5

24

Advanced MST Algorithms

Deterministic comparison based algorithms.

■ O(m log n) Jarník, Prim, Dijkstra, Kruskal, Boruvka

■ O(m log log n). Cheriton-Tarjan (1976), Yao (1975)

■ O(m β(m, n)). Fredman-Tarjan (1987)

■ O(m log β(m, n)). Gabow-Galil-Spencer-Tarjan (1986)

■ O(m α (m, n)). Chazelle (2000)

■ O(m). Holy grail.

Worth noting.

■ O(m) randomized. Karger-Klein-Tarjan (1995)

■ O(m) verification. Dixon-Rauch-Tarjan (1992)

25

Linear Expected Time MST

Random sampling algorithm. (Karger, Klein, Tarjan, 1995)

■ If lots of nodes, use Boruvka.
– decreases number of nodes by factor of 2

■ If lots of edges, delete useless ones.
– use random sampling to decrease by factor of 2

■ Expected running time is O(m + n).

26

Filtering Out F-Heavy Edges

Definition. Given graph G and forest F, an edge e is F-heavy if both
endpoints lie in the same component and ce > cf for all edges f on
fundamental cycle.

■ Cycle optimality conditions: T* is MST ⇔ no T*-heavy edges.

■ If e is F-heavy for any forest F, then safe to discard e.
– apply red rule to fundamental cycles

Verification subroutine. (Dixon-Rauch-Tarjan, 1992).

■ Given graph G and forest F, is F is a MSF?

■ In O(m + n) time, either answers (i) YES or (ii) NO and output all
F-heavy edges.

1

3

8

2

6

7

4

5

Forest F
F-heavy edges

27

Random Sampling

Random sampling.

■ Obtain G(p) by independently including each edge with p = 1/2.

■ Let F be MSF in G(p).

■ Compute F-heavy edges in G.

■ Delete F-heavy edges from G.

1

3

8

2

6

7

4

5

G
28

Random Sampling

Random sampling.

■ Obtain G(p) by independently including each edge with p = 1/2.

■ Let F be MSF in G(p).

■ Compute F-heavy edges in G.

■ Delete F-heavy edges from G.

G(1/2)

1

3

8

2

6

7

4

5

29

Random Sampling

Random sampling.

■ Obtain G(p) by independently including each edge with p = 1/2.

■ Let F be MSF in G(p).

■ Compute F-heavy edges in G.

■ Delete F-heavy edges from G.

G(1/2)

1

3

8

2

6

7

4

5

MSF F in G(1/2)
30

Random Sampling

Random sampling.

■ Obtain G(p) by independently including each edge with p = 1/2.

■ Let F be MSF in G(p).

■ Compute F-heavy edges in G.

■ Delete F-heavy edges from G.

G

1

3

8

6

7

4

5

2

F-heavy

MSF F in G(1/2)

31

Random Sampling

Random sampling.

■ Obtain G(p) by independently including each edge with p = 1/2.

■ Let F be MSF in G(p).

■ Compute F-heavy edges in G.

■ Delete F-heavy edges from G.

G

1

3

8

6

7

4

5

2

32

Random Sampling Lemma

Random sampling lemma. Given graph G, let F be a MSF in G(p).
Then the expected number of F-light edges is ≤ n / p.

Proof.

■ WMA c1 ≤ c2 ≤ . . . ≤ cm, and that G(p) is constructed by flipping
coin m times and including edge ei if ith coin flip is heads.

■ Construct MSF F at same time using Kruskal’s algorithm.
– edge ei added to F ⇔ ei is F-light
– F-lightness of edge ei depends only on first i-1 coin flips and

does not change after phase i

■ Phase k = period between when |F| = k-1 and |F| = k.
– F-light edge has probability p of being added to F
– # F-light edges in phase k ~ Geometric(p)

■ Total # F-light edges p NegativeBinomial(n, p).

33

Random Sampling Algorithm

Run 3 phases of Boruvka’s algorithm on G. Let G1 be
resulting graph, and let C be set of contracted edges.

IF G1 has no edges RETURN F ← C

G2 ← G1(1/2)
Compute MSF F2 of G2 recursively.

Compute all F2-heavy edges in G1, remove these
edges from G1, and let G’ be resulting graph.

Compute MSF F’ of G’ recursively.

Return F ← C ∪ F’

Random Sampling Algorithm(G, m, n)

34

Analysis of Random Sampling Algorithm

Theorem. The algorithm computes an MST in O(m+n) expected time.

Proof.

■ Correctness: red-rule, blue-rule.

■ Let T(m, n) denote expected running time to find MST on graph
with n vertices and m arcs.

■ G1 has ≤ m arcs and ≤ n/8 vertices.
– each Boruvka phase decreases n by factor of 2

■ G2 has ≤ n/8 vertices and expected # arcs ≤ m/2
– each edge deleted with probability 1/2

■ G’ has ≤ n/8 vertices and expected # arcs ≤ n/4
– random sampling lemma

()

)(2),(

otherwise)(8/,4/)8/,2/(

1or 1 if)(
),T(

else everything’ of MSF of MSF 2

nmcnmT

nmcnnTnmT

nmnmc
nm

GG

+≤⇒







+++
≤≤+

≤
43421443442144 344 21

