Greedy Algorithms

Greed Some possibly familiar examples:
T T T T
. Gale-Shapley stable matching algorithm.

. Dijkstra’s shortest path algorithm.
. Prim and Kruskal MST algorithms.

L'\THEET "Greed is good. Greed is right. Greed . Huffman codes.
works. Greed cuts through, clarifies,

and captures the essence of the
evolutionary spirit."
1 Gordon Gecko
(Michael Douglas)

HNELLL L CRARL SN (Y. BRAE

Selecting Breakpoints Selecting Breakpoints: Greedy Algorithm

Minimizing breakpoints.

. Truck driver going from Princeton to Palo Alto along : : :
predetermined route. Greedy Breakpoint Selection Algorithm

. Refueling stations at certain points along the way. BT BpEEREl WS o7 e Easl A el et
. 0 =by,<b, <b,<... <h,
. Truck fuel capacity = C.
S - {0} <:::S=breakp0|nts selected
Greedy algorithm. x =0
. while (x # b,)
+ Goas far as you can before refueling. let p be largest integer such that bp <x +C
if (b, = x)
«—C— «—C—>» <«—C—> «—C—» return "no solution”
X « b
p
ms rﬂm LIt [0 S - S0 p}
J return S

Pri t
rinceton c c c Palo Alto

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):
. Let0=g, <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. LetO=fy<f < ...<f =L denote set of breakpoints in optimal
solution with fy =g, f,;=9,,...,f =g, for largest possible value of r.

. Note: q <p.

9 9 9, g, g,
creedy: | AN N S 6]
orr. TN S e

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Let0=g, <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. LetO=fy<f < ...<f =L denote set of breakpoints in optimal
solution with fy =g, f,;=9,,...,f, =g, for largest possible value of r.

. Note: q <p.

9 9, 9, 9p
Greedy: [JIEY 2 3 4 Sl 6 [7 8]
OPT: 1 2 3 4 O 6 |

Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):
. Let0=g, <g;< ...<g, =L denote set of breakpoints chosen by
greedy and assume it is not optimal.

. LetO=fy<f < ...<f =L denote set of breakpoints in optimal

solution with fy =g, f,;=9,,...,f =g, for largest possible value of r.
. Note: q <p.
. Thus, f3=9q,f;=0;,...,f;=9,4

do g, 9, 9q 9p
Greedy:

OPT: 1 2 3 4 5

Activity Selection

Activity selection problem (CLR 17.1).
. Jobrequests 1,2, ...,n.
. Jobjstartsats jand finishes at f it
. Two jobs compatible if they don't overlap.
. Goal: find maximum subset of mutually compatible jobs.

B

E

G

» Time

Activity Selection: Greedy Algorithm

Greedy Activity Selection Algorithm

Sort jobs by increasing finish tines so that
f,sf, ... <f..

S=¢ <:::S=jobs selected.
j =1ton
if (job j conpatible with A)
S - sO{j}
return S

=1

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letgy, g, ... 9g,denote set of jobs selected by greedy and assume
it is not optimal.

. Letf,, f,, ... f, denote set of jobs selected by optimal solution with

f; =04, f,=0, ..., =g, for largest possible value of r.
. Note:r<q.
p=6
Greedy: EEN [21]
fi=9; f,=9, f3=05
OPT: 8|
r=3 q=7

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letgy, g, ... 9g,denote set of jobs selected by greedy and assume
it is not optimal.

. Letf,, f,, ... f, denote set of jobs selected by optimal solution with

f; =94 1,=0, ...,f =g, for largest possible value of r.
. Note:r<aq.
p=6
Greedy: B 2]
f,=9; f2=9; f3=0s

OPT: BEE N | [5ST

r=3 ﬁ q=7

| Replace 11 with 9 |

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

. Letgy, g, ... 9g,denote set of jobs selected by greedy and assume
it is not optimal.

. Letf,, f,, ... f, denote set of jobs selected by optimal solution with

f, =94 1,=0, ..., f =g, for largest possible value of r.
. Note:r<aq.
p=6
Greedy: B 2]
f,=9; f2=9; f3=03

OPT: s N o |

r=3 ﬁ q=7

| Replace 11 with 9 |

Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):
. Letgy, g, ... 9g,denote set of jobs selected by greedy and assume
it is not optimal.

. Letf,, f,, ... f, denote set of jobs selected by optimal solution with

f; =04, f,=0, ..., =g, for largest possible value of r.
. Note:r<q.
p=6
Greedy: N B =
fi=9; f,=0, f3=05
OPT: s N o |
r=4 q=7

Making Change

Given currency denominations: 1, 5, 10, 25, 100, devise a method to
pay amount to customer using fewest number of coins.

. Ex. 34¢.

Greedy algorithm.
. At each iteration, add coin of the largest value that does not take

us past the amount to be paid.
. Ex. $2.89.

Coin-Changing: Greedy Algorithm

Greedy Coin-Changing Algorithm

Sort coi ns denom nations by increasing val ue:

€, <Cpy <... <¢C
S < @ <:::S=coinsselected.
while (x # 0)
let p be largest integer such that c, < X
if (p=0)
return "no solution found"
X « X - Cp
S « s O {p}
return S

Is Greedy Optimal for Coin-Changing Problem?
Yes, for U.S. coinage: {c,, C,, C3, C4, C5} = {1, 5, 10, 25, 100}.

Ad hoc proof.
. Consider optimal way to change amount ¢, <X < C,; .
. Greedy takes coin k.
. Suppose optimal solution does not take coin k.
- it must take enough coins of type ¢, C,, ..., C,; to add up to x.

Max # taken by Max value of coins

optimal solution 1,2,...,kinany OPT
1 1 4 4
2 1 4+5=9
3 10 2 20+4 =24
4| 2 dimes 0O
4 | 25 3 75+ 24 = 99 <,_| il
5 100 no limit no limit

Does Greedy Always Work?

US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.
. Ex. 140¢.
. Greedy: 100,34,1,1,1,1,1,1.
. Optimal: 70, 70.

ey

|-\.'.'|.|;_ |

Characteristics of Greedy Algorithms

Greedy choice property.
. Globally optimal solution can be arrived at by making locally
optimal (greedy) choice.

. At each step, choose most "promising"” candidate, without
worrying whether it will prove to be a sound decision in long run.

Optimal substructure property.
. Optimal solution to the problem contains optimal solutions to sub-
problems.

- if best way to change 34¢ is {25, 5, 1, 1, 1, 1} then best way to
change 29¢ is {25, 1, 1, 1, 1}.

Objective function does not explicitly appear in greedy algorithm!

Hard, if not impossible, to precisely define "greedy algorithm."”
. See matroids (CLR 17.4), greedoids for very general frameworks.

Minimizing Lateness

Minimizing lateness problem.
. Single resource can process one job at atime.
. njobs to be processed.
- job j requires p; units of processing time.
- job j has due date d;.
- If we assign job j to start at time s, it finishes at time f; = s; + p;.
. Lateness: {;=max {0, f;-d;}.
. Goal: schedule all jobs to minimize maximum lateness L = max /.

EE
EEE [-- | IR

Lateness =3

EE d-5 | d-2 BECESEEN -1l d=9

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: Greedy Algorithm

Greedy Activity Selection Algorithm

Sort jobs by increasing deadline so that
d, £d, = ..=d,.
t=0
forj=1ton
Assign job j to interval [t, t+p il
s; « tLf ; < t+p
t < t+p
output intervals [s fe f j]

max lateness = 2 ——————

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: No Idle Time

Fact 1: there exists an optimal schedule with no idle time.

d=4 Il d-c N J-0»

0 1 2 3 4 5 6 7 8 9 10 11

Fact 2: the greedy schedule has no idle time.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:
. i<
. jscheduled before i inversion

Fact 3: greedy schedule < noinversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

An inversion in schedule S is a pair of jobs i and j such that:
. i<
. jscheduled before i inversion

Fact 3: greedy schedule < noinversions.

Fact 4: if a schedule (with no idle time) has an inversion, it has one
whose with a pair of inverted jobs scheduled consecutively.

Fact 5: swapping two adjacent, inverted jobs:
. Reduces the number of inversions by one.

. Does not increase the maximum lateness.

Theorem: greedy schedule is optimal.

Minimizing Lateness: Proof of Fact 5

An inversion in schedule S is a pair of jobs i and j such that:
. i<

. jscheduled before i ‘

[[DN [|
[T DN [|

f

Swapping two adjacent, inverted jobs does not increase max lateness.
. Cp=t forallk i, j
.0
. Ifjobjis late: /

i = fj-d; (definition)

= f,-d, (jfinishesattime f;)
< fi-d (i<))
< ¢ (definition)

