Fibonacci Heaps

These lecture slides are adapted
from CLRS, Chapter 20.

Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne

Priority Queues

Heaps
Operation Linked List Binary Binomial Fibonacci® Relaxed
make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1
delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1
delete N log N log N log N log N
is-empty 1 1 1 1 1
t amortized {}
| this time |

Fibonacci Heaps

Fibonacci heap history. Fredman and Tarjan (1986)
. Ingenious data structure and analysis.
. Original motivation: O(m + n log n) shortest path algorithm.
- also led to faster algorithms for MST, weighted bipartite matching
. Still ahead of its time.

Fibonacci heap intuition.

. Similar to binomial heaps, but less structured.
. Decrease-key and union run in O(1) time.

. "Lazy" unions.

Fibonacci Heaps: Structure

Fibonacci heap.
. Set of min-heap ordered trees.

min
@@ @ 3
D ©@ marked D 6 @
© H - ®

Fibonacci Heaps: Implementation

Implementation.
. Represent trees using left-child, right sibling pointers and circular,
doubly linked list.
- can quickly splice off subtrees
. Roots of trees connected with circular doubly linked list.
- fast union
. Painter to root of tree with min element.
- fast find-min

Fibonacci Heaps: Potential Function

Key quantities.
. Degree[x] = degree of node x.
. Mark[x] = mark of node x (black or gray).
. t(H) =#trees.
. m(H) = # marked nodes.
. ®(H) =t(H) + 2m(H) = potential function.

t(H)=5, m(H)=3

®(H) = 11 .
degree =3 min

D @ ® 0 :

Fibonacci Heaps: Insert
Insert.
. Create a new singleton tree.

. Add to left of min pointer.
. Update min pointer.

o

Fibonacci Heaps: Insert

Insert.

. Create a new singleton tree.
. Add to left of min pointer.

. Update min pointer.

Fibonacci Heaps: Insert

Insert.

. Create a new singleton tree.
. Add to left of min pointer.

. Update min pointer.

Running time. O(1) amortized
. Actual cost = O(2).

. Change in potential = +1.

. Amortized cost = O(1).

OD o2 o (D
DB @ @ O &

Fibonacci Heaps: Union

Union.
. Concatenate two Fibonacci heaps.
. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Union.
. Concatenate two Fibonacci heaps.
. Root lists are circular, doubly linked lists.

Running time. O(1) amortized
. Actual cost = O(2).

. Change in potential = 0.

. Amortized cost = O(1).

H

Fibonacci Heaps: Delete Min

Delete min.
. Delete min and concatenate its children into root list.

min

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

min

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

min curtent
7 @ @@ ® @
@ @ @ @
@)
Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

min

current @

| Merge 17 and 23 trees. |

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

oo
‘e e

Merge 7 and 17 trees. |

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

0[1]2]3
[] [] , []
min current
(=2)
24 7 @ 41

D @ @) (0 ()
© @)

| Merge 7 and 24 trees. |

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

min current

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

41

Fibonacci Heaps: Delete Min
Delete min.

. Consolidate trees so that no two roots have same degree.

current

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

current

Fibonacci Heaps: Delete Min

Delete min.

. Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min Analysis

Notation.

. D(n) = max degree of any node in Fibonacci heap with n nodes.
. t(H) = #treesin heap H.

. ®(H) = t(H) + 2m(H).

Actual cost. O(D(n) + t(H))
. O(D(n)) work adding min’s children into root list and updating min.
—at most D(n) children of min node
. O(D(n) + t(H)) work consolidating trees.

- work is proportional to size of root list since number of roots
decreases by one after each merging

-<D(n) +t(H) - 1 root nodes at beginning of consolidation

Amortized cost. O(D(n))
. t(H) < D(n) + 1 since no two trees have same degree.
. A®(H) < D(n) + 1 - t(H).

Fibonacci Heaps: Delete Min Analysis

Is amortized cost of O(D(n)) good?

. Yes, if only Insert, Delete-min, and Union operations supported.

- in this case, Fibonacci heap contains only binomial trees since
we only merge trees of equal root degree

- this implies D(n) < Oog, NO

. Yes, if we support Decrease-key in clever way.
- we'll show that D(n) < [og,NLwhere @is golden ratio
-¢=1+0
-@=(1+v5)/2=1.618...
- limiting ratio between successive Fibonacci numbers!

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 0: min-heap property not violated.
- decrease key of x to k
- change heap min pointer if necessary

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

| Decrease 45 to 15.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 1. parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

| Decrease 45 to 15.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

15 o min ” =
z y © © @
7 © @

5 Decrease 35to 5.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

£ @ /7\(- 18 38
24 @ @ @ 39 @
26 ®))
Decrease 35 to 5.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

D @ @ e n @
N
:
{?| &

| parent marked

| Decrease 35to 5.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent p[x], and add x to root list
- cut off link between p[x] and p[p[x]], add p[x] to root list
If p[p[x]] unmarked, then mark it.
If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

2@ @ n @
N <
(30) (52)

| Decrease 35to 5.

Fibonacci Heaps: Decrease Key Analysis

Notation.

. t(H) = #treesin heap H.

. m(H) = # marked nodes in heap H.
. ®(H) = t(H) + 2m(H).

Actual cost. O(c)
. O(1) time for decrease key.
. O(1) time for each of c cascading cuts, plus reinserting in root list.

Amortized cost. O(1)
. tH) = t(H)+c
. mH)S mH)-c+2
- each cascading cut unmarks a node
- last cascading cut could potentially mark a node
. AP < c+2(-c+2) =4-c.

Fibonacci Heaps: Delete

Delete node x.
. Decrease key of x to -c.
. Delete min element in heap.

Amortized cost. O(D(n))
. O(1) for decrease-key.
. O(D(n)) for delete-min.
. D(n) = max degree of any node in Fibonacci heap.

Fibonacci Heaps: Bounding Max Degree

Definition. D(N) = max degree in Fibonacci heap with N nodes.
Key lemma. D(N) <log,N, where ¢= (1 +v5)/2.
Corollary. Delete and Delete-min take O(log N) amortized time.

Lemma. Letx be anode with degree k, and lety,, ..., Yy, denote the
children of x in the order in which they were linked to x. Then:

degree ()>D0 if i=1
ety =i o it 21
Proof.
. Wheny,is linked to x, y,, ..., Y, already linked to x,
O degree(x) =i-1
O degree(y;) =i -1 since we only link nodes of equal degree

. Since then, y; has lost at most one child
- otherwise it would have been cut from x
. Thus, degree(y,)=i-1 or i-2

Fibonacci Heaps: Bounding Max Degree

Key lemma. In a Fibonacci heap with N nodes, the maximum degree of
any node is at most log, N, where ¢= (1 + V5) /2.

Proof of key lemma.
. For any node x, we show that size(x) = ¢fegree(x)
- size(x) =# node in subtree rooted at x
- taking base @logs, degree(x) < log,, (size(x)) < log,N.
. Lets, be min size of tree rooted at any degree k node.

- trivial to seethats,=1,s, =2 — *
o . S = size(x)
- s, monotonically increases with k K
. Let x* be a degree k node of size s,, = 2+i_22928(yi)
and lety,, ...,y be children in order P
that they were linked to x*. 2 2+) Sy
i=2 '
k
s
i=2
k-
= 2+5s
i:O 40

Fibonacci Facts

01 if k=0
O .
Definition. The Fibonacci sequenceis: F¢ = 02 if k=1

. 1,2,3,58,13,21, ... HR 1 +F, if k22
¢ Slightly nonstandard definition.

Fact F1. F, 2 ¢f, where@ = (1+V5)/2 = 1.618...

k-2
Fact F2. > = + ’ E
Fork=2, F, =2 EO Fi s = sz(x)

k .
= 2+ 3 size(y;)
Consequence. s, 2 F, 2 ¢k =2
. This implies that size(x) > fegree®)

for all nodes x.

\2

k
2+i=22 Stteql y,]

v

K
2+ 35,
%

k-2
= 2+ >S
i=0

Golden Ratio

Definition. The Fibonacci sequenceis: 1, 2, 3,5, 8, 13,21, ...
Definition. The golden ratio @ = (1 +V5)/2 = 1.618...
. Divide a rectangle into a square and smaller rectangle such that the
smaller rectangle has the same ratio as original one.

£l
st . st s U

Parthenon, Athens Greece

Fibonacci Numbers and Nature

Pinecone

Cauliflower

Fibonacci Proofs

Fact F1. F!< > (ﬁ‘ Freo = Fo+Fpu
Proof. (by induction on k) > ¢k +¢k+1
. Base cases: K
F=1 F=2> = ¢°(1+9)
“Fo=h =220 = $5(0?)
. Inductive hypotheses: - ¢kff <::: F=¢+1
-F, = ¢¢ and F,,, = gk =9
k-2
FactF2. Forkz2 F, =2+ 3 F
Proof. (by induction on k) 1=0
. Base cases: Fieo = Fy +k_F2k+1
—F2=3,F3=5 = 2+ ZFI +Fk+l
i=0

. Inductive hypotheses:

k
k=2 2+ S F
Fk = 2 + -zo Fi igo k
i=

On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated
algorithms, they usually run extremely fast. The computer doesn'’t
need to understand the algorithm, its task is only to run the
programs.”

A

)

R. E. Tarjan

