
Shortest Path With Negative Weights
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■ Directed shortest path with negative weights.

■ Negative cycle detection.
– application:  currency exchange arbitrage

■ Tramp steamer problem.
– application:  optimal pipelining of VLSI chips
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Shortest Paths with Negative Weights

Negative cost cycle.

If some path from s to v contains a negative cost cycle, there does not 
exist a shortest s-v path; otherwise, there exists one that is simple.
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Shortest Paths with Negative Weights

OPT(i, v) = length of shortest s-v path using at most i arcs.

■ Let P be such a path.

■ Case 1:  P uses at most i-1 arcs.

■ Case 2:  P uses exactly i arcs.
– if (u, v) is last arc, then OPT selects best s-u path using at most 

i-1 arcs, and then uses (u, v)

Goal:  compute OPT(n-1, t) and find a corresponding s-t path.
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Shortest Paths with Negative Weights:  Algorithm

INPUT: G = (V, E), s, t
n = |V|

ARRAY: OPT[0..n, V]
FOREACH v ∈ V

OPT[0, v] = ∞

OPT[0,s] = 0
FOR i = 1 to n

FOREACH v ∈ V
m  = OPT[i-1, v]
m’ = ∞
FOREACH (u, v) ∈ E

m’ = min (m’, OPT[i-1, u] + c[u,v])
OPT[i, v] = min(m, m’)

RETURN OPT[n-1, t]

Dynamic Programming Shortest Path

{ }),(),1(min
),(

vucuiOPT
Evu

+−
∈

6

Shortest Paths:  Running Time

Dynamic programming algorithm requires Θ(mn) time and space.

■ Outer loop repeats n times.

■ Inner loop for vertex v considers indegree(v) arcs.

Finding the shortest paths.

■ Could maintain predecessor variables.

■ Alternative:  compute optimal distances, consider only zero 
reduced cost arcs.
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Shortest Paths:  Detecting Negative Cycles

L1:  if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path 
from s to v using at most n arcs contains a cycle; moreover any such 
cycle has negative cost.

■ Proof (by contradiction).

■ Since OPT(n,v) < OPT(n-1,v), P has n arcs.

■ Let C be any directed cycle in P.

■ Deleting C gives us a path from s to v of fewer than n arcs  ⇒
C has negative cost.

s v
C

c(C) < 0
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Shortest Paths:  Detecting Negative Cycles

L1:  if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path 
from s to v using at most n arcs contains a cycle; moreover any such 
cycle has negative cost.

■ Proof (by contradiction).

■ Since OPT(n,v) < OPT(n-1,v), P has n arcs.

■ Let C be any directed cycle in P.

■ Deleting C gives us a path from s to v of fewer than n arcs  ⇒
C has negative cost.

Corollary:  can detect negative
cost cycle in O(mn) time.

■ Need to trace back
through sub-problems.
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Detecting Negative Cycles:  Application

Currency conversion.

■ Given n currencies (financial instruments) and exchange rates 
between pairs of currencies, is there an arbitrage opportunity?

■ Fastest algorithm very valuable!
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Shortest Paths:  Practical Improvements

Practical improvements.

■ If OPT(i, v) = OPT(i-1, v) for all nodes v, then OPT(i, v) are the 
shortest path distances.

! Consequence:  can stop algorithm as soon as this 
happens.

■ Maintain only one array OPT(v).

! Use O(m+n) space; otherwise Θ(mn) best case.

■ No need to check arcs of the form (u, v) unless OPT(u) changed in 
previous iteration.

! Avoid unnecessary work.

Overall effect.

■ Still O(mn) worst case, but O(m) behavior in practice.
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Shortest Paths:  Practical Improvements

INPUT: G = (V, E), s, t
n = |V|

ARRAY: OPT[V], pred[V]
FOREACH v ∈ V

OPT[v]  = ∞, pred[v] = φ

OPT[s] = 0, Q = QUEUEinit(s) 
WHILE (Q ≠ φ)

u = QUEUEget()
FOREACH (u, v) ∈ E

IF (OPT[u] + c[u,v] < OPT[v])
OPT[v] = OPT[u] + c[u,v]
pred[v] = u
IF (v ∉ Q)

QUEUEput(v)

RETURN OPT[n-1]

Bellman-Ford FIFO Shortest Path

Negative cycle tweak: 
stop if any node 
enqueued n times.
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Shortest Paths:  State of the Art

All times below are for single source shortest path in directed graphs 
with no negative cycle.

O(mn) time, O(m + n) space.

■ Shortest path:  straightforward.

■ Negative cycle:  Bellman-Ford predecessor variables contain 
shortest path or negative cycle (not proved here).

O(mn1/2 log C) time if all arc costs are integers between –C and C.

■ Reduce to weighted bipartite matching (assignment problem).

■ "Cost-scaling."

■ Gabow-Tarjan (1989), Orlin-Ahuja (1992).

O(mn + n 2 log n) undirected shortest path,  no negative cycles.

■ Reduce to weighted non-bipartite matching.

■ Beyond the scope of this course.
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Tramp-Steamer Problem 

Tramp-steamer (min cost to time ratio) problem.

■ A tramp steamer travels from port to port carrying cargo. A voyage 
from port v to port w earn p(v,w) dollars, and requires t(v,w) days.

■ Captain wants a tour that achieves largest mean daily profit.
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Tramp-Steamer Problem 

Tramp-steamer (min cost to time ratio) problem.

■ Input:  digraph G = (V, E), arc costs c, and arc traversal times t > 0.

■ Goal:  find a directed cycle W that minimizes ratio 

Novel application.

■ Minimize cycle time (maximize frequency) of logic chip on IBM 
processor chips by adjusting clocking schedule.

Special case.

■ Find a negative cost cycle.
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Tramp-Steamer Problem 

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te. 

Case 1:  there exists negative cost cycle W using lengths le .

Case 2:  every directed cycle has positive cost using lengths le.
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Tramp-Steamer Problem 

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te. 

Case 3:  every directed cycle has nonnegative cost using lengths le , 
and there exists a zero cost cycle W*.
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Tramp-Steamer Problem 

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te. 

Case 1:  there exists negative cost cycle W using lengths le .

■ µ*  <  µ

Case 2:  every directed cycle has positive cost using lengths le.

■ µ*  >  µ

Case 3:  every directed cycle has nonnegative cost using lengths le , 
and there exists a zero cost cycle W*.

■ µ*  =  µ
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Tramp-Steamer:  Sequential Search Procedure

Theorem:  sequential algorithm terminates.

■ Case 1  ⇒ µ strictly decreases from one iteration to the next.

■ µ is the ratio of some cycle, and only finitely many cycles.

Let µ be a known upper bound on µ*.

REPEAT (forever)
le ← ce – µ
Solve shortest path problem with lengths le
IF (negative cost cycle W w.r.t. le)

µ ← µ(W)
ELSE

Find a zero cost cycle W* w.r.t. le.
RETURNW*.

Sequential Tramp Steamer
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Tramp-Steamer:  Binary Search Procedure

W ← cycle
left  ← -C, right ← C

REPEAT (forever)
IF (µ(W) = µ*)

RETURN W
µ ← (left + right) / 2
le ← ce – µ
Solve shortest path problem with lengths le
IF (negative cost cycle w.r.t. le)

right ← µ
W ← negative cost cycle w.r.t. le

ELSE IF (zero cost cycle W*)
RETURNW*.

ELSE
left ← µ

Binary Search Tramp Steamer

left ≤ µ* ≤ right
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Tramp-Steamer:  Binary Search Procedure

Invariant:  interval [left, right] and cycle W satisfy:
left ≤ µ* ≤ µ(W) < right. 

■ Proof by induction follows from cases 1-2.

Lemma.  Upon termination, the algorithm returns a min ratio cycle.

■ Immediate from case 3.

Assumption.

■ All arc costs are integers between –C and C.

■ All arc traversal times are integers between –T and T.

Lemma.  The algorithm terminates after O(log(nCT)) iterations.

■ Proof on next slide.

Theorem.  The algorithm finds min ratio cycle in O(mn log (nCT)) time.
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Tramp-Steamer:  Binary Search Procedure

Lemma.  The algorithm terminates after O(log(nCT)) iterations.
■ Initially, left = -C, right = C.

■ Each iteration halves the size of the interval.

■ Let c(W) and t(W) denote cost and traversal time of cycle W.

■ We show any interval of size less than  1 / (n2T2) contains at most 
one value from the set { c(W) / t(W) : W is a cycle }.

– let W1 and W2 cycles with µ(W1) > µ(W2) 

– numerator of RHS is at least 1, denominator is at most n2T2

■ After 1 + log2 ((2C) (n2T2)) = O(log (nCT))  iterations, at most one 
ratio in the interval.

■ Algorithm maintains cycle W and interval [left, right] s.t.
left ≤ µ* ≤ µ(W) < right.
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Tramp Steamer:  State of the Art

Min ratio cycle.

■ O(mn log (nCT)).

■ O(n3 log2n) dense.  (Megiddo, 1979)

■ O(n3 log n) sparse.  (Megiddo, 1983)

Minimum mean cycle.

■ Special case when all traversal times = 1.

■ Θ(mn).   (Karp, 1978)

■ O(mn1/2 log C).  (Orlin-Ahuja, 1992)

■ O(mn log n).   (Karp-Orlin, 1981)
– parametric simplex - best in practice
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Optimal Pipelining of VLSI Chip

Novel application.

■ Minimize cycle time (maximize frequency) of logic chip on IBM 
processor chips by adjusting clocking schedule.

If clock signal arrive at latches simultaneously, min cycle time = 14. 

Allow individual clock arrival times at latches.

Clock signal at latch:

■ A:  0, 10, 20, 30, . . .

■ B:  -1, 9, 19, 29, . . .

■ C:  0, 10, 20, 30, . . .

■ D: -4, 6, 16, 26, . . .

Optimal cycle time = 10.
Max mean weight cycle = 10.
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