
Shortest Path With Negative Weights

s

3

t

2

6

7

4

5

10

18

-16

9

6

15
-8

30

20

44

16

11

6

19

6

2

Contents

Contents.

■ Directed shortest path with negative weights.

■ Negative cycle detection.
– application: currency exchange arbitrage

■ Tramp steamer problem.
– application: optimal pipelining of VLSI chips

3

Shortest Paths with Negative Weights

Negative cost cycle.

If some path from s to v contains a negative cost cycle, there does not
exist a shortest s-v path; otherwise, there exists one that is simple.

s v
W

c(W) < 0

3

45

-6

7

-4

4

Shortest Paths with Negative Weights

OPT(i, v) = length of shortest s-v path using at most i arcs.

■ Let P be such a path.

■ Case 1: P uses at most i-1 arcs.

■ Case 2: P uses exactly i arcs.
– if (u, v) is last arc, then OPT selects best s-u path using at most

i-1 arcs, and then uses (u, v)

Goal: compute OPT(n-1, t) and find a corresponding s-t path.

{ }


















+−−

=
=

∈
otherwise),(),1(),,1(min

0i if0

),(
min

),(
vucuiOPTviOPTviOPT

Evu

5

Shortest Paths with Negative Weights: Algorithm

INPUT: G = (V, E), s, t
n = |V|

ARRAY: OPT[0..n, V]
FOREACH v ∈ V

OPT[0, v] = ∞

OPT[0,s] = 0
FOR i = 1 to n

FOREACH v ∈ V
m = OPT[i-1, v]
m’ = ∞
FOREACH (u, v) ∈ E

m’ = min (m’, OPT[i-1, u] + c[u,v])
OPT[i, v] = min(m, m’)

RETURN OPT[n-1, t]

Dynamic Programming Shortest Path

{ }),(),1(min
),(

vucuiOPT
Evu

+−
∈

6

Shortest Paths: Running Time

Dynamic programming algorithm requires Θ(mn) time and space.

■ Outer loop repeats n times.

■ Inner loop for vertex v considers indegree(v) arcs.

Finding the shortest paths.

■ Could maintain predecessor variables.

■ Alternative: compute optimal distances, consider only zero
reduced cost arcs.

mv
Vv

=∑
∈

)(indegree

7

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path
from s to v using at most n arcs contains a cycle; moreover any such
cycle has negative cost.

■ Proof (by contradiction).

■ Since OPT(n,v) < OPT(n-1,v), P has n arcs.

■ Let C be any directed cycle in P.

■ Deleting C gives us a path from s to v of fewer than n arcs ⇒
C has negative cost.

s v
C

c(C) < 0

8

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path
from s to v using at most n arcs contains a cycle; moreover any such
cycle has negative cost.

■ Proof (by contradiction).

■ Since OPT(n,v) < OPT(n-1,v), P has n arcs.

■ Let C be any directed cycle in P.

■ Deleting C gives us a path from s to v of fewer than n arcs ⇒
C has negative cost.

Corollary: can detect negative
cost cycle in O(mn) time.

■ Need to trace back
through sub-problems.

2

1

3

5
4

18

2

5
-23

-15
-11

6

s

0

0

0 0

0

9

Detecting Negative Cycles: Application

Currency conversion.

■ Given n currencies (financial instruments) and exchange rates
between pairs of currencies, is there an arbitrage opportunity?

■ Fastest algorithm very valuable!

F$

£ ¥DM

1/7

3/102/3 2

170 56

3/504/3

8

IBM

1/10000

800

10

Shortest Paths: Practical Improvements

Practical improvements.

■ If OPT(i, v) = OPT(i-1, v) for all nodes v, then OPT(i, v) are the
shortest path distances.

! Consequence: can stop algorithm as soon as this
happens.

■ Maintain only one array OPT(v).

! Use O(m+n) space; otherwise Θ(mn) best case.

■ No need to check arcs of the form (u, v) unless OPT(u) changed in
previous iteration.

! Avoid unnecessary work.

Overall effect.

■ Still O(mn) worst case, but O(m) behavior in practice.

11

Shortest Paths: Practical Improvements

INPUT: G = (V, E), s, t
n = |V|

ARRAY: OPT[V], pred[V]
FOREACH v ∈ V

OPT[v] = ∞, pred[v] = φ

OPT[s] = 0, Q = QUEUEinit(s)
WHILE (Q ≠ φ)

u = QUEUEget()
FOREACH (u, v) ∈ E

IF (OPT[u] + c[u,v] < OPT[v])
OPT[v] = OPT[u] + c[u,v]
pred[v] = u
IF (v ∉ Q)

QUEUEput(v)

RETURN OPT[n-1]

Bellman-Ford FIFO Shortest Path

Negative cycle tweak:
stop if any node
enqueued n times.

12

Shortest Paths: State of the Art

All times below are for single source shortest path in directed graphs
with no negative cycle.

O(mn) time, O(m + n) space.

■ Shortest path: straightforward.

■ Negative cycle: Bellman-Ford predecessor variables contain
shortest path or negative cycle (not proved here).

O(mn1/2 log C) time if all arc costs are integers between –C and C.

■ Reduce to weighted bipartite matching (assignment problem).

■ "Cost-scaling."

■ Gabow-Tarjan (1989), Orlin-Ahuja (1992).

O(mn + n 2 log n) undirected shortest path, no negative cycles.

■ Reduce to weighted non-bipartite matching.

■ Beyond the scope of this course.

13

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.

■ A tramp steamer travels from port to port carrying cargo. A voyage
from port v to port w earn p(v,w) dollars, and requires t(v,w) days.

■ Captain wants a tour that achieves largest mean daily profit.

3

21

p = 30
t = 7

p = 12
t = 3

p = -3
t = 5

mean daily profit =
15
39

537
31230 =

++
−+

Westward Ho (1894 – 1946)

14

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.

■ Input: digraph G = (V, E), arc costs c, and arc traversal times t > 0.

■ Goal: find a directed cycle W that minimizes ratio

Novel application.

■ Minimize cycle time (maximize frequency) of logic chip on IBM
processor chips by adjusting clocking schedule.

Special case.

■ Find a negative cost cycle.

.)(
∑

∑
=

∈

∈

We
e

We
e

t

c
Wµ

15

Tramp-Steamer Problem

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te.

Case 1: there exists negative cost cycle W using lengths le .

Case 2: every directed cycle has positive cost using lengths le.

.*0)(µµµ ≥
∑

∑
>∑ ⇔<−

∈

∈

∈
We

e

We
e

We
ee t

c
tc

.* cycle everyfor

 cycle everyfor 0)(

µµµ

µ

<⇔
∑

∑
<

∑ ⇔>−

∈

∈

∈

W
t

c

Wtc

We
e

We
e

We
ee

16

Tramp-Steamer Problem

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te.

Case 3: every directed cycle has nonnegative cost using lengths le ,
and there exists a zero cost cycle W*.

.* cycle everyfor

 Wcycle everyfor 0)(

µµµ

µ

≤⇔
∑

∑
≤

∑ ⇔≥−

∈

∈

∈

W
t

c

tc

We
e

We
e

We
ee

.*

*

* µµµ =⇒=
∑

∑

∈

∈

We
e

We
e

t

c

17

Tramp-Steamer Problem

Linearize objective function.

■ Let µ* be value of minimum ratio cycle.

■ Let µ be a constant.

■ Define le = ce – µ te.

Case 1: there exists negative cost cycle W using lengths le .

■ µ* < µ

Case 2: every directed cycle has positive cost using lengths le.

■ µ* > µ

Case 3: every directed cycle has nonnegative cost using lengths le ,
and there exists a zero cost cycle W*.

■ µ* = µ

18

Tramp-Steamer: Sequential Search Procedure

Theorem: sequential algorithm terminates.

■ Case 1 ⇒ µ strictly decreases from one iteration to the next.

■ µ is the ratio of some cycle, and only finitely many cycles.

Let µ be a known upper bound on µ*.

REPEAT (forever)
le ← ce – µ
Solve shortest path problem with lengths le
IF (negative cost cycle W w.r.t. le)

µ ← µ(W)
ELSE

Find a zero cost cycle W* w.r.t. le.
RETURNW*.

Sequential Tramp Steamer

19

Tramp-Steamer: Binary Search Procedure

W ← cycle
left ← -C, right ← C

REPEAT (forever)
IF (µ(W) = µ*)

RETURN W
µ ← (left + right) / 2
le ← ce – µ
Solve shortest path problem with lengths le
IF (negative cost cycle w.r.t. le)

right ← µ
W ← negative cost cycle w.r.t. le

ELSE IF (zero cost cycle W*)
RETURNW*.

ELSE
left ← µ

Binary Search Tramp Steamer

left ≤ µ* ≤ right

20

Tramp-Steamer: Binary Search Procedure

Invariant: interval [left, right] and cycle W satisfy:
left ≤ µ* ≤ µ(W) < right.

■ Proof by induction follows from cases 1-2.

Lemma. Upon termination, the algorithm returns a min ratio cycle.

■ Immediate from case 3.

Assumption.

■ All arc costs are integers between –C and C.

■ All arc traversal times are integers between –T and T.

Lemma. The algorithm terminates after O(log(nCT)) iterations.

■ Proof on next slide.

Theorem. The algorithm finds min ratio cycle in O(mn log (nCT)) time.

21

Tramp-Steamer: Binary Search Procedure

Lemma. The algorithm terminates after O(log(nCT)) iterations.
■ Initially, left = -C, right = C.

■ Each iteration halves the size of the interval.

■ Let c(W) and t(W) denote cost and traversal time of cycle W.

■ We show any interval of size less than 1 / (n2T2) contains at most
one value from the set { c(W) / t(W) : W is a cycle }.

– let W1 and W2 cycles with µ(W1) > µ(W2)

– numerator of RHS is at least 1, denominator is at most n2T2

■ After 1 + log2 ((2C) (n2T2)) = O(log (nCT)) iterations, at most one
ratio in the interval.

■ Algorithm maintains cycle W and interval [left, right] s.t.
left ≤ µ* ≤ µ(W) < right.

.0
)()(

)()()()(
0

)(
)(

)(
)(

21

1221

2

2

1

1 >−⇔>−
WtWt

WtWcWtWc
Wt
Wc

Wt
Wc

22

Tramp Steamer: State of the Art

Min ratio cycle.

■ O(mn log (nCT)).

■ O(n3 log2n) dense. (Megiddo, 1979)

■ O(n3 log n) sparse. (Megiddo, 1983)

Minimum mean cycle.

■ Special case when all traversal times = 1.

■ Θ(mn). (Karp, 1978)

■ O(mn1/2 log C). (Orlin-Ahuja, 1992)

■ O(mn log n). (Karp-Orlin, 1981)
– parametric simplex - best in practice

23

Optimal Pipelining of VLSI Chip

Novel application.

■ Minimize cycle time (maximize frequency) of logic chip on IBM
processor chips by adjusting clocking schedule.

If clock signal arrive at latches simultaneously, min cycle time = 14.

Allow individual clock arrival times at latches.

Clock signal at latch:

■ A: 0, 10, 20, 30, . . .

■ B: -1, 9, 19, 29, . . .

■ C: 0, 10, 20, 30, . . .

■ D: -4, 6, 16, 26, . . .

Optimal cycle time = 10.
Max mean weight cycle = 10.

B

DC

14

A

10

5

11

9

Latch Graph

7

6

