Shortest Path With Negative Weights

10 |
/v@ -
9

6

9

-16
30 I
11
15
16

7%
o
\\;33

Contents

Contents.
. Directed shortest path with negative weights.
. Negative cycle detection.
—application: currency exchange arbitrage
. Tramp steamer problem.
- application: optimal pipelining of VLSI chips

Shortest Paths with Negative Weights

!
s

If some path from s to v contains a negative cost cycle, there does not
exist a shortest s-v path; otherwise, there exists one that is simple.

Negative cost cycle.

c(W) <0

Shortest Paths with Negative Weights

OPT(i, v) = length of shortest s-v path using at most i arcs.
. Let P be such a path.
. Case 1: Puses at mosti-1arcs.
. Case 2: Puses exactlyi arcs.

—if (u, v) is last arc, then OPT selects best s-u path using at most
i-1 arcs, and then uses (u, v)

oo if i=0
O

OPT(i,v) = a_nin EOPT(i—L v), min {OPT(i-Lu)+c(u,v)} E otherwise
(u,v)OE

Goal: compute OPT(n-1, t) and find a corresponding s-t path.

Shortest Paths with Negative Weights: Algorithm

INPUT: G = (V, B), s, t
n=1Vv|

ARRAY: OPT[O..n, V]
FOREACH v O V
OPT[O0, V] = o

OPT[0,s] =0
FORi =1ton
FOREACH v U V i OPT(i -1, u)+c(u,v
m = OPT[i-1, V] (umBE{ ()+ el)}
m = o
FOREACH (u, v) O E @

m =mn (m, OPT[i-1, u] + c[u,vV])
OPT[i, vl = min(m m)

RETURN OPT[n-1, t]

Shortest Paths: Running Time

Dynamic programming algorithm requires ©(mn) time and space.
. Outer loop repeats n times.
. Inner loop for vertex v considers indegree(v) arcs.

S indegree(v) = m

vOv

Finding the shortest paths.
. Could maintain predecessor variables.

. Alternative: compute optimal distances, consider only zero
reduced cost arcs.

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path
from s to v using at most n arcs contains a cycle; moreover any such
cycle has negative cost.

. Proof (by contradiction).
. Since OPT(n,v) < OPT(n-1,v), P has n arcs.
. Let C be any directed cycle in P.

. Deleting C gives us a path from s to v of fewer than n arcs O
C has negative cost.

c(C)<0

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path
from s to v using at most n arcs contains a cycle; moreover any such
cycle has negative cost.

. Proof (by contradiction).

. Since OPT(n,v) < OPT(n-1,v), P has n arcs.

. Let C be any directed cycle in P.

. Deleting C gives us a path from s to v of fewer than n arcs O

C has negative cost.
Corollary: can detect negative
cost cycle in O(mn) time. 0

0
. Need to trace back e ? 18
through sub-problems. —
23
i -11
-15

Detecting Negative Cycles: Application

Currency conversion.

. Given n currencies (financial instruments) and exchange rates
between pairs of currencies, is there an arbitrage opportunity?

. Fastest algorithm very valuable!

8
$)< 1/7 F
T 800
43 213 5 310 o =)
1/10000
170 (OV)——— 56 ——>

Shortest Paths: Practical Improvements

Practical improvements.
. If OPT(i, v) = OPT(i-1, v) for all nodes v, then OPT(i, v) are the
shortest path distances.

Consequence: can stop algorithm as soon as this
happens.

. Maintain only one array OPT(v).
Use O(m+n) space; otherwise ©®(mn) best case.

. No need to check arcs of the form (u, v) unless OPT(u) changed in
previous iteration.
Avoid unnecessary work.

Overall effect.
. Still O(mn) worst case, but O(m) behavior in practice.

Shortest Paths: Practical Improvements

Bellman-Ford FIFO Shortest Path

INPUT: G=(V, B), s, t
n=1_Vv|

ARRAY: OPT[V], pred[V]
FOREACH v O V
OPT[v] = o, pred[v] = ¢

Negative cycle tweak: OPT[s] = 0, Q= QUEUE nit(s)
stop if any node VWH LE (Q # ¢)
enqueued n times. u = QUEUEget ()

FOREACH (u, v) OE
IF (OPT[u] + c[u,v] < OPT[V])
OPT[v] = OPT[u] + c[u,V]
pred[v] = u
IF (v OQ
QUEUEpuUt (V)

RETURN CPT[n- 1]

Shortest Paths: State of the Art

All times below are for single source shortest path in directed graphs
with no negative cycle.

O(mn) time, O(m + n) space.
. Shortest path: straightforward.
. Negative cycle: Bellman-Ford predecessor variables contain
shortest path or negative cycle (not proved here).

O(mn¥2]og C) time if all arc costs are integers between —C and C.
. Reduce to weighted bipartite matching (assignment problem).
. "Cost-scaling."
. Gabow-Tarjan (1989), Orlin-Ahuja (1992).

O(mn + n? log n) undirected shortest path, no negative cycles.
. Reduce to weighted non-bipartite matching.
. Beyond the scope of this course.

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.

. Atramp steamer travels from port to port carrying cargo. A voyage
from port v to port w earn p(v,w) dollars, and requires t(v,w) days.

. Captain wants a tour that achieves largest mean daily profit.

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.
. Input: digraph G = (V, E), arc costs c, and arc traversal times t > 0.

C
. Goal: find a directed cycle W that minimizes ratio HW) = ?
W
Novel application.

. Minimize cycle time (maximize frequency) of logic chip on IBM
processor chips by adjusting clocking schedule.

Special case.
. Find a negative cost cycle.

p=30
t=7 p=-3
t=5
p=12 >
Westward Ho (1894 — 1946) t=3
. . 30+12-3_ 39
mean daily profit= ——=—
7+3+5 15
Tramp-Steamer Problem
Linearize objective function.
. Let p* be value of minimum ratio cycle.
. Let ube aconstant.
. Define fg=c,—pt,.
Case 1: there exists negative cost cycle W using lengths le .
%
Z(Ce_)ute)<o g :U>e 2 u*.
elw Z te
ew
Case 2: every directed cycle has positive cost using lengths Lo

S(ce—puty)>0 foreverycycleW o
elw

> Ce

eW

M < for everycycleW < u < u*.
ew €

Tramp-Steamer Problem

Linearize objective function.
. Let p* be value of minimum ratio cycle.
. Let ube aconstant.
. Define fg=c,—pt,.

Case 3: every directed cycle has nonnegative cost using lengths Lo,
and there exists a zero cost cycle W*.

S(ce—uty) = 0 foreverycycleW -
elw

> Ce
J7= emzwit for everycycleW < u < u*.
e
edw
e
? =u o u=u*.
e

ewW*

Tramp-Steamer Problem

Linearize objective function.
. Let p* be value of minimum ratio cycle.
. Let ube aconstant.
. Define /. =c,—pt..

Case 1: there exists negative cost cycle W using lengths Ly .
- U<

Case 2: every directed cycle has positive cost using lengths le.
P>
Case 3: every directed cycle has nonnegative cost using lengths le,

and there exists a zero cost cycle W*.
Y

Tramp-Steamer: Sequential Search Procedure

Sequential Tramp Steamer

Let p be a known upper bound on p*.

REPEAT (forever)

le « Co — M

Solve shortest path problem with lengths Lq

IF (negative cost cycle W w.r.t. lg)
H o« J(W)

ELSE
Find a zero cost cycle W* w.r.t. L.
RETURNW?*,

Theorem: sequential algorithm terminates.
. Casel O ustrictly decreases from one iteration to the next.
. Mis theratio of some cycle, and only finitely many cycles.

Tramp-Steamer: Binary Search Procedure

Binary Search Tramp Steamer

W ~ cycle
left « -C right — C <#|eft < p* < right

REPEAT (f orever)
IF (W = p*)
RETURN W
B« (left + right) / 2
le « Co — M
Solve shortest path problem with lengths s
IF (negative cost cycle w.r.t. le)
right < p
W ~ negative cost cycle w.r.t. Lq
ELSE IF (zero cost cycle W¥*)
RETURNW*.
ELSE
left < n

Tramp-Steamer: Binary Search Procedure

Invariant: interval [l eft, right] and cycle W satisfy:
left < p* < p(W < right.

. Proof by induction follows from cases 1-2.

Lemma. Upon termination, the algorithm returns a min ratio cycle.
. Immediate from case 3.

Assumption.
. All arc costs are integers between —C and C.

. All arc traversal times are integers between —T and T.

Lemma. The algorithm terminates after O(log(nCT)) iterations.
. Proof on next slide.

Theorem. The algorithm finds min ratio cycle in O(mn log (nCT)) time.

Tramp-Steamer: Binary Search Procedure Tramp Steamer: State of the Art

Lemma. The algorithm terminates after O(log(nCT)) iterations. Min ratio cycle.
. Initially, l eft = -C, right = C . O(mn log (nCT)).
. Each iteration halves the size of the interval. . O(n3log?n) dense. (Megiddo, 1979)
. Let c(W) and t(W) denote cost and traversal time of cycle W. . O(n%log n) sparse. (Megiddo, 1983)
. We show any interval of size less than 1/ (nT?) contains at most
one value from the set { c(W) / t(W) : Wis acycle }. Minimum mean cycle.
- let W, and W, cycles with p(W;) > p(W,) . Special case when all traversal times = 1.
. ©(mn). (Karp, 1978)

cWy) _cWa) _ o _ cW)itWs) - c(Wp)t(Wh)

> 0. . O(mn*2log C). (Orlin-Ahuja, 1992)
W) (W) t(Wy) t(W5)

. O(mnlogn). (Karp-Orlin, 1981)
- parametric simplex - best in practice

- numerator of RHS is at least 1, denominator is at most n2T2

. After 1 +log, ((2C) (n2T?)) = O(log (nCT)) iterations, at most one
ratio in the interval.

. Algorithm maintains cycle W and interval [| eft, right] s.t.
left < p* < W(W < right.

Optimal Pipelining of VLSI Chip

Novel application.
. Minimize cycle time (maximize frequency) of logic chip on IBM
processor chips by adjusting clocking schedule.

If clock signal arrive at latches simultaneously, min cycle time = 14.

Allow individual clock arrival times at latches.

| s —®

Clock signal at latch:

. A: 0,10, 20, 30, ...

. B:-1,9,19,29,...

. C: 0,10,20,30,... 10 14 o

. D:-4,6,16,26, ...
Optimal cycle time = 10. @ 5

Max mean weight cycle = 10. 6

Latch Graph

